Age Owner Branch data TLA Line data Source code
1 : : /*-------------------------------------------------------------------------
2 : : *
3 : : * gininsert.c
4 : : * insert routines for the postgres inverted index access method.
5 : : *
6 : : *
7 : : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 : : * Portions Copyright (c) 1994, Regents of the University of California
9 : : *
10 : : * IDENTIFICATION
11 : : * src/backend/access/gin/gininsert.c
12 : : *-------------------------------------------------------------------------
13 : : */
14 : :
15 : : #include "postgres.h"
16 : :
17 : : #include "access/gin_private.h"
18 : : #include "access/gin_tuple.h"
19 : : #include "access/parallel.h"
20 : : #include "access/table.h"
21 : : #include "access/tableam.h"
22 : : #include "access/xloginsert.h"
23 : : #include "catalog/index.h"
24 : : #include "catalog/pg_collation.h"
25 : : #include "commands/progress.h"
26 : : #include "miscadmin.h"
27 : : #include "nodes/execnodes.h"
28 : : #include "pgstat.h"
29 : : #include "storage/bufmgr.h"
30 : : #include "storage/predicate.h"
31 : : #include "tcop/tcopprot.h"
32 : : #include "utils/datum.h"
33 : : #include "utils/memutils.h"
34 : : #include "utils/rel.h"
35 : : #include "utils/builtins.h"
36 : :
37 : :
38 : : /* Magic numbers for parallel state sharing */
39 : : #define PARALLEL_KEY_GIN_SHARED UINT64CONST(0xB000000000000001)
40 : : #define PARALLEL_KEY_TUPLESORT UINT64CONST(0xB000000000000002)
41 : : #define PARALLEL_KEY_QUERY_TEXT UINT64CONST(0xB000000000000003)
42 : : #define PARALLEL_KEY_WAL_USAGE UINT64CONST(0xB000000000000004)
43 : : #define PARALLEL_KEY_BUFFER_USAGE UINT64CONST(0xB000000000000005)
44 : :
45 : : /*
46 : : * Status for index builds performed in parallel. This is allocated in a
47 : : * dynamic shared memory segment.
48 : : */
49 : : typedef struct GinBuildShared
50 : : {
51 : : /*
52 : : * These fields are not modified during the build. They primarily exist
53 : : * for the benefit of worker processes that need to create state
54 : : * corresponding to that used by the leader.
55 : : */
56 : : Oid heaprelid;
57 : : Oid indexrelid;
58 : : bool isconcurrent;
59 : : int scantuplesortstates;
60 : :
61 : : /*
62 : : * workersdonecv is used to monitor the progress of workers. All parallel
63 : : * participants must indicate that they are done before leader can use
64 : : * results built by the workers (and before leader can write the data into
65 : : * the index).
66 : : */
67 : : ConditionVariable workersdonecv;
68 : :
69 : : /*
70 : : * mutex protects all following fields
71 : : *
72 : : * These fields contain status information of interest to GIN index builds
73 : : * that must work just the same when an index is built in parallel.
74 : : */
75 : : slock_t mutex;
76 : :
77 : : /*
78 : : * Mutable state that is maintained by workers, and reported back to
79 : : * leader at end of the scans.
80 : : *
81 : : * nparticipantsdone is number of worker processes finished.
82 : : *
83 : : * reltuples is the total number of input heap tuples.
84 : : *
85 : : * indtuples is the total number of tuples that made it into the index.
86 : : */
87 : : int nparticipantsdone;
88 : : double reltuples;
89 : : double indtuples;
90 : :
91 : : /*
92 : : * ParallelTableScanDescData data follows. Can't directly embed here, as
93 : : * implementations of the parallel table scan desc interface might need
94 : : * stronger alignment.
95 : : */
96 : : } GinBuildShared;
97 : :
98 : : /*
99 : : * Return pointer to a GinBuildShared's parallel table scan.
100 : : *
101 : : * c.f. shm_toc_allocate as to why BUFFERALIGN is used, rather than just
102 : : * MAXALIGN.
103 : : */
104 : : #define ParallelTableScanFromGinBuildShared(shared) \
105 : : (ParallelTableScanDesc) ((char *) (shared) + BUFFERALIGN(sizeof(GinBuildShared)))
106 : :
107 : : /*
108 : : * Status for leader in parallel index build.
109 : : */
110 : : typedef struct GinLeader
111 : : {
112 : : /* parallel context itself */
113 : : ParallelContext *pcxt;
114 : :
115 : : /*
116 : : * nparticipanttuplesorts is the exact number of worker processes
117 : : * successfully launched, plus one leader process if it participates as a
118 : : * worker (only DISABLE_LEADER_PARTICIPATION builds avoid leader
119 : : * participating as a worker).
120 : : */
121 : : int nparticipanttuplesorts;
122 : :
123 : : /*
124 : : * Leader process convenience pointers to shared state (leader avoids TOC
125 : : * lookups).
126 : : *
127 : : * GinBuildShared is the shared state for entire build. sharedsort is the
128 : : * shared, tuplesort-managed state passed to each process tuplesort.
129 : : * snapshot is the snapshot used by the scan iff an MVCC snapshot is
130 : : * required.
131 : : */
132 : : GinBuildShared *ginshared;
133 : : Sharedsort *sharedsort;
134 : : Snapshot snapshot;
135 : : WalUsage *walusage;
136 : : BufferUsage *bufferusage;
137 : : } GinLeader;
138 : :
139 : : typedef struct
140 : : {
141 : : GinState ginstate;
142 : : double indtuples;
143 : : GinStatsData buildStats;
144 : : MemoryContext tmpCtx;
145 : : MemoryContext funcCtx;
146 : : BuildAccumulator accum;
147 : : ItemPointerData tid;
148 : : int work_mem;
149 : :
150 : : /*
151 : : * bs_leader is only present when a parallel index build is performed, and
152 : : * only in the leader process.
153 : : */
154 : : GinLeader *bs_leader;
155 : :
156 : : /* number of participating workers (including leader) */
157 : : int bs_num_workers;
158 : :
159 : : /* used to pass information from workers to leader */
160 : : double bs_numtuples;
161 : : double bs_reltuples;
162 : :
163 : : /*
164 : : * The sortstate is used by workers (including the leader). It has to be
165 : : * part of the build state, because that's the only thing passed to the
166 : : * build callback etc.
167 : : */
168 : : Tuplesortstate *bs_sortstate;
169 : :
170 : : /*
171 : : * The sortstate used only within a single worker for the first merge pass
172 : : * happening there. In principle it doesn't need to be part of the build
173 : : * state and we could pass it around directly, but it's more convenient
174 : : * this way. And it's part of the build state, after all.
175 : : */
176 : : Tuplesortstate *bs_worker_sort;
177 : : } GinBuildState;
178 : :
179 : :
180 : : /* parallel index builds */
181 : : static void _gin_begin_parallel(GinBuildState *buildstate, Relation heap, Relation index,
182 : : bool isconcurrent, int request);
183 : : static void _gin_end_parallel(GinLeader *ginleader, GinBuildState *state);
184 : : static Size _gin_parallel_estimate_shared(Relation heap, Snapshot snapshot);
185 : : static double _gin_parallel_heapscan(GinBuildState *state);
186 : : static double _gin_parallel_merge(GinBuildState *state);
187 : : static void _gin_leader_participate_as_worker(GinBuildState *buildstate,
188 : : Relation heap, Relation index);
189 : : static void _gin_parallel_scan_and_build(GinBuildState *state,
190 : : GinBuildShared *ginshared,
191 : : Sharedsort *sharedsort,
192 : : Relation heap, Relation index,
193 : : int sortmem, bool progress);
194 : :
195 : : static ItemPointer _gin_parse_tuple_items(GinTuple *a);
196 : : static Datum _gin_parse_tuple_key(GinTuple *a);
197 : :
198 : : static GinTuple *_gin_build_tuple(OffsetNumber attrnum, unsigned char category,
199 : : Datum key, int16 typlen, bool typbyval,
200 : : ItemPointerData *items, uint32 nitems,
201 : : Size *len);
202 : :
203 : : /*
204 : : * Adds array of item pointers to tuple's posting list, or
205 : : * creates posting tree and tuple pointing to tree in case
206 : : * of not enough space. Max size of tuple is defined in
207 : : * GinFormTuple(). Returns a new, modified index tuple.
208 : : * items[] must be in sorted order with no duplicates.
209 : : */
210 : : static IndexTuple
5458 tgl@sss.pgh.pa.us 211 :CBC 114399 : addItemPointersToLeafTuple(GinState *ginstate,
212 : : IndexTuple old,
213 : : ItemPointerData *items, uint32 nitem,
214 : : GinStatsData *buildStats, Buffer buffer)
215 : : {
216 : : OffsetNumber attnum;
217 : : Datum key;
218 : : GinNullCategory category;
219 : : IndexTuple res;
220 : : ItemPointerData *newItems,
221 : : *oldItems;
222 : : int oldNPosting,
223 : : newNPosting,
224 : : nwritten;
225 : : GinPostingList *compressedList;
226 : :
227 [ - + ]: 114399 : Assert(!GinIsPostingTree(old));
228 : :
229 : 114399 : attnum = gintuple_get_attrnum(ginstate, old);
230 : 114399 : key = gintuple_get_key(ginstate, old, &category);
231 : :
232 : : /* merge the old and new posting lists */
4347 heikki.linnakangas@i 233 : 114399 : oldItems = ginReadTuple(ginstate, attnum, old, &oldNPosting);
234 : :
4286 235 : 114399 : newItems = ginMergeItemPointers(items, nitem,
236 : : oldItems, oldNPosting,
237 : : &newNPosting);
238 : :
239 : : /* Compress the posting list, and try to a build tuple with room for it */
4347 240 : 114399 : res = NULL;
72 msawada@postgresql.o 241 :GNC 114399 : compressedList = ginCompressPostingList(newItems, newNPosting, GinMaxItemSize, &nwritten);
242 [ + + ]: 114399 : if (nwritten == newNPosting)
243 : : {
4347 heikki.linnakangas@i 244 :CBC 114393 : res = GinFormTuple(ginstate, attnum, key, category,
245 : : (char *) compressedList,
246 : 114393 : SizeOfGinPostingList(compressedList),
247 : : newNPosting,
248 : : false);
249 : : }
250 : :
72 msawada@postgresql.o 251 :GNC 114399 : pfree(newItems);
252 : 114399 : pfree(compressedList);
253 : :
4347 heikki.linnakangas@i 254 [ + + ]:CBC 114399 : if (!res)
255 : : {
256 : : /* posting list would be too big, convert to posting tree */
257 : : BlockNumber postingRoot;
258 : :
259 : : /*
260 : : * Initialize posting tree with the old tuple's posting list. It's
261 : : * surely small enough to fit on one posting-tree page, and should
262 : : * already be in order with no duplicates.
263 : : */
5458 tgl@sss.pgh.pa.us 264 : 11 : postingRoot = createPostingTree(ginstate->index,
265 : : oldItems,
266 : : oldNPosting,
267 : : buildStats,
268 : : buffer);
269 : :
270 : : /* Now insert the TIDs-to-be-added into the posting tree */
4410 heikki.linnakangas@i 271 : 11 : ginInsertItemPointers(ginstate->index, postingRoot,
272 : : items, nitem,
273 : : buildStats);
274 : :
275 : : /* And build a new posting-tree-only result tuple */
4347 276 : 11 : res = GinFormTuple(ginstate, attnum, key, category, NULL, 0, 0, true);
5458 tgl@sss.pgh.pa.us 277 : 11 : GinSetPostingTree(res, postingRoot);
278 : : }
4347 heikki.linnakangas@i 279 : 114399 : pfree(oldItems);
280 : :
5458 tgl@sss.pgh.pa.us 281 : 114399 : return res;
282 : : }
283 : :
284 : : /*
285 : : * Build a fresh leaf tuple, either posting-list or posting-tree format
286 : : * depending on whether the given items list will fit.
287 : : * items[] must be in sorted order with no duplicates.
288 : : *
289 : : * This is basically the same logic as in addItemPointersToLeafTuple,
290 : : * but working from slightly different input.
291 : : */
292 : : static IndexTuple
293 : 256579 : buildFreshLeafTuple(GinState *ginstate,
294 : : OffsetNumber attnum, Datum key, GinNullCategory category,
295 : : ItemPointerData *items, uint32 nitem,
296 : : GinStatsData *buildStats, Buffer buffer)
297 : : {
4347 heikki.linnakangas@i 298 : 256579 : IndexTuple res = NULL;
299 : : GinPostingList *compressedList;
300 : : int nwritten;
301 : :
302 : : /* try to build a posting list tuple with all the items */
72 msawada@postgresql.o 303 :GNC 256579 : compressedList = ginCompressPostingList(items, nitem, GinMaxItemSize, &nwritten);
304 [ + + ]: 256579 : if (nwritten == nitem)
305 : : {
4347 heikki.linnakangas@i 306 :CBC 256528 : res = GinFormTuple(ginstate, attnum, key, category,
307 : : (char *) compressedList,
308 : 256528 : SizeOfGinPostingList(compressedList),
309 : : nitem, false);
310 : : }
72 msawada@postgresql.o 311 :GNC 256579 : pfree(compressedList);
312 : :
5458 tgl@sss.pgh.pa.us 313 [ + + ]:CBC 256579 : if (!res)
314 : : {
315 : : /* posting list would be too big, build posting tree */
316 : : BlockNumber postingRoot;
317 : :
318 : : /*
319 : : * Build posting-tree-only result tuple. We do this first so as to
320 : : * fail quickly if the key is too big.
321 : : */
4347 heikki.linnakangas@i 322 : 51 : res = GinFormTuple(ginstate, attnum, key, category, NULL, 0, 0, true);
323 : :
324 : : /*
325 : : * Initialize a new posting tree with the TIDs.
326 : : */
4424 327 : 51 : postingRoot = createPostingTree(ginstate->index, items, nitem,
328 : : buildStats, buffer);
329 : :
330 : : /* And save the root link in the result tuple */
5458 tgl@sss.pgh.pa.us 331 : 51 : GinSetPostingTree(res, postingRoot);
332 : : }
333 : :
7169 teodor@sigaev.ru 334 : 256579 : return res;
335 : : }
336 : :
337 : : /*
338 : : * Insert one or more heap TIDs associated with the given key value.
339 : : * This will either add a single key entry, or enlarge a pre-existing entry.
340 : : *
341 : : * During an index build, buildStats is non-null and the counters
342 : : * it contains should be incremented as needed.
343 : : */
344 : : void
5458 tgl@sss.pgh.pa.us 345 : 395680 : ginEntryInsert(GinState *ginstate,
346 : : OffsetNumber attnum, Datum key, GinNullCategory category,
347 : : ItemPointerData *items, uint32 nitem,
348 : : GinStatsData *buildStats)
349 : : {
350 : : GinBtreeData btree;
351 : : GinBtreeEntryInsertData insertdata;
352 : : GinBtreeStack *stack;
353 : : IndexTuple itup;
354 : : Page page;
355 : :
3045 peter_e@gmx.net 356 : 395680 : insertdata.isDelete = false;
357 : :
5458 tgl@sss.pgh.pa.us 358 : 395680 : ginPrepareEntryScan(&btree, attnum, key, category, ginstate);
2450 heikki.linnakangas@i 359 : 395680 : btree.isBuild = (buildStats != NULL);
360 : :
831 tmunro@postgresql.or 361 : 395680 : stack = ginFindLeafPage(&btree, false, false);
3528 kgrittn@postgresql.o 362 : 395680 : page = BufferGetPage(stack->buffer);
363 : :
7014 bruce@momjian.us 364 [ + + ]: 395680 : if (btree.findItem(&btree, stack))
365 : : {
366 : : /* found pre-existing entry */
7169 teodor@sigaev.ru 367 : 139099 : itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, stack->off));
368 : :
7014 bruce@momjian.us 369 [ + + ]: 139099 : if (GinIsPostingTree(itup))
370 : : {
371 : : /* add entries to existing posting tree */
372 : 24696 : BlockNumber rootPostingTree = GinGetPostingTree(itup);
373 : :
374 : : /* release all stack */
7169 teodor@sigaev.ru 375 : 24696 : LockBuffer(stack->buffer, GIN_UNLOCK);
7014 bruce@momjian.us 376 : 24696 : freeGinBtreeStack(stack);
377 : :
378 : : /* insert into posting tree */
4410 heikki.linnakangas@i 379 : 24696 : ginInsertItemPointers(ginstate->index, rootPostingTree,
380 : : items, nitem,
381 : : buildStats);
7169 teodor@sigaev.ru 382 : 24694 : return;
383 : : }
384 : :
2150 tmunro@postgresql.or 385 : 114403 : CheckForSerializableConflictIn(ginstate->index, NULL,
386 : : BufferGetBlockNumber(stack->buffer));
387 : : /* modify an existing leaf entry */
5458 tgl@sss.pgh.pa.us 388 : 114399 : itup = addItemPointersToLeafTuple(ginstate, itup,
389 : : items, nitem, buildStats, stack->buffer);
390 : :
3045 peter_e@gmx.net 391 : 114399 : insertdata.isDelete = true;
392 : : }
393 : : else
394 : : {
2150 tmunro@postgresql.or 395 : 256581 : CheckForSerializableConflictIn(ginstate->index, NULL,
396 : : BufferGetBlockNumber(stack->buffer));
397 : : /* no match, so construct a new leaf entry */
5458 tgl@sss.pgh.pa.us 398 : 256579 : itup = buildFreshLeafTuple(ginstate, attnum, key, category,
399 : : items, nitem, buildStats, stack->buffer);
400 : :
401 : : /*
402 : : * nEntries counts leaf tuples, so increment it only when we make a
403 : : * new one.
404 : : */
2235 405 [ + + ]: 256579 : if (buildStats)
406 : 76256 : buildStats->nEntries++;
407 : : }
408 : :
409 : : /* Insert the new or modified leaf tuple */
4403 heikki.linnakangas@i 410 : 370978 : insertdata.entry = itup;
411 : 370978 : ginInsertValue(&btree, stack, &insertdata, buildStats);
7014 bruce@momjian.us 412 : 370978 : pfree(itup);
413 : : }
414 : :
415 : : /*
416 : : * Extract index entries for a single indexable item, and add them to the
417 : : * BuildAccumulator's state.
418 : : *
419 : : * This function is used only during initial index creation.
420 : : */
421 : : static void
5458 tgl@sss.pgh.pa.us 422 : 471553 : ginHeapTupleBulkInsert(GinBuildState *buildstate, OffsetNumber attnum,
423 : : Datum value, bool isNull,
424 : : ItemPointer heapptr)
425 : : {
426 : : Datum *entries;
427 : : GinNullCategory *categories;
428 : : int32 nentries;
429 : : MemoryContext oldCtx;
430 : :
7099 teodor@sigaev.ru 431 : 471553 : oldCtx = MemoryContextSwitchTo(buildstate->funcCtx);
5458 tgl@sss.pgh.pa.us 432 : 471553 : entries = ginExtractEntries(buildstate->accum.ginstate, attnum,
433 : : value, isNull,
434 : : &nentries, &categories);
7099 teodor@sigaev.ru 435 : 471553 : MemoryContextSwitchTo(oldCtx);
436 : :
5458 tgl@sss.pgh.pa.us 437 : 471553 : ginInsertBAEntries(&buildstate->accum, heapptr, attnum,
438 : : entries, categories, nentries);
439 : :
440 : 471553 : buildstate->indtuples += nentries;
441 : :
7099 teodor@sigaev.ru 442 : 471553 : MemoryContextReset(buildstate->funcCtx);
7169 443 : 471553 : }
444 : :
445 : : static void
2231 andres@anarazel.de 446 : 471242 : ginBuildCallback(Relation index, ItemPointer tid, Datum *values,
447 : : bool *isnull, bool tupleIsAlive, void *state)
448 : : {
7014 bruce@momjian.us 449 : 471242 : GinBuildState *buildstate = (GinBuildState *) state;
450 : : MemoryContext oldCtx;
451 : : int i;
452 : :
7169 teodor@sigaev.ru 453 : 471242 : oldCtx = MemoryContextSwitchTo(buildstate->tmpCtx);
454 : :
6033 bruce@momjian.us 455 [ + + ]: 942795 : for (i = 0; i < buildstate->ginstate.origTupdesc->natts; i++)
5458 tgl@sss.pgh.pa.us 456 : 471553 : ginHeapTupleBulkInsert(buildstate, (OffsetNumber) (i + 1),
2231 andres@anarazel.de 457 : 471553 : values[i], isnull[i], tid);
458 : :
459 : : /* If we've maxed out our available memory, dump everything to the index */
320 tgl@sss.pgh.pa.us 460 [ - + ]: 471242 : if (buildstate->accum.allocatedMemory >= maintenance_work_mem * (Size) 1024)
461 : : {
462 : : ItemPointerData *list;
463 : : Datum key;
464 : : GinNullCategory category;
465 : : uint32 nlist;
466 : : OffsetNumber attnum;
467 : :
5617 tgl@sss.pgh.pa.us 468 :UBC 0 : ginBeginBAScan(&buildstate->accum);
5458 469 : 0 : while ((list = ginGetBAEntry(&buildstate->accum,
3101 470 [ # # ]: 0 : &attnum, &key, &category, &nlist)) != NULL)
471 : : {
472 : : /* there could be many entries, so be willing to abort here */
6424 473 [ # # ]: 0 : CHECK_FOR_INTERRUPTS();
5458 474 : 0 : ginEntryInsert(&buildstate->ginstate, attnum, key, category,
475 : : list, nlist, &buildstate->buildStats);
476 : : }
477 : :
7169 teodor@sigaev.ru 478 : 0 : MemoryContextReset(buildstate->tmpCtx);
479 : 0 : ginInitBA(&buildstate->accum);
480 : : }
481 : :
7169 teodor@sigaev.ru 482 :CBC 471242 : MemoryContextSwitchTo(oldCtx);
483 : 471242 : }
484 : :
485 : : /*
486 : : * ginFlushBuildState
487 : : * Write all data from BuildAccumulator into the tuplesort.
488 : : *
489 : : * The number of TIDs written to the tuplesort at once is limited, to reduce
490 : : * the amount of memory needed when merging the intermediate results later.
491 : : * The leader will see up to two chunks per worker, so calculate the limit to
492 : : * not need more than MaxAllocSize overall.
493 : : *
494 : : * We don't need to worry about overflowing maintenance_work_mem. We can't
495 : : * build chunks larger than work_mem, and that limit was set so that workers
496 : : * produce sufficiently small chunks.
497 : : */
498 : : static void
289 tomas.vondra@postgre 499 :UBC 0 : ginFlushBuildState(GinBuildState *buildstate, Relation index)
500 : : {
501 : : ItemPointerData *list;
502 : : Datum key;
503 : : GinNullCategory category;
504 : : uint32 nlist;
505 : : OffsetNumber attnum;
506 : 0 : TupleDesc tdesc = RelationGetDescr(index);
507 : : uint32 maxlen;
508 : :
509 : : /* maximum number of TIDs per chunk (two chunks per worker) */
43 510 : 0 : maxlen = MaxAllocSize / sizeof(ItemPointerData);
511 : 0 : maxlen /= (2 * buildstate->bs_num_workers);
512 : :
289 513 : 0 : ginBeginBAScan(&buildstate->accum);
514 : 0 : while ((list = ginGetBAEntry(&buildstate->accum,
515 [ # # ]: 0 : &attnum, &key, &category, &nlist)) != NULL)
516 : : {
517 : : /* information about the key */
56 drowley@postgresql.o 518 :UNC 0 : CompactAttribute *attr = TupleDescCompactAttr(tdesc, (attnum - 1));
519 : :
520 : : /* start of the chunk */
43 tomas.vondra@postgre 521 :UBC 0 : uint32 offset = 0;
522 : :
523 : : /* split the entry into smaller chunk with up to maxlen items */
524 [ # # ]: 0 : while (offset < nlist)
525 : : {
526 : : /* GIN tuple and tuple length */
527 : : GinTuple *tup;
528 : : Size tuplen;
529 : 0 : uint32 len = Min(maxlen, nlist - offset);
530 : :
531 : : /* there could be many entries, so be willing to abort here */
532 [ # # ]: 0 : CHECK_FOR_INTERRUPTS();
533 : :
534 : 0 : tup = _gin_build_tuple(attnum, category,
535 : 0 : key, attr->attlen, attr->attbyval,
536 : 0 : &list[offset], len,
537 : : &tuplen);
538 : :
539 : 0 : offset += len;
540 : :
541 : 0 : tuplesort_putgintuple(buildstate->bs_worker_sort, tup, tuplen);
542 : :
543 : 0 : pfree(tup);
544 : : }
545 : : }
546 : :
289 547 : 0 : MemoryContextReset(buildstate->tmpCtx);
548 : 0 : ginInitBA(&buildstate->accum);
549 : 0 : }
550 : :
551 : : /*
552 : : * ginBuildCallbackParallel
553 : : * Callback for the parallel index build.
554 : : *
555 : : * This is similar to the serial build callback ginBuildCallback, but
556 : : * instead of writing the accumulated entries into the index, each worker
557 : : * writes them into a (local) tuplesort.
558 : : *
559 : : * The worker then sorts and combines these entries, before writing them
560 : : * into a shared tuplesort for the leader (see _gin_parallel_scan_and_build
561 : : * for the whole process).
562 : : */
563 : : static void
564 : 0 : ginBuildCallbackParallel(Relation index, ItemPointer tid, Datum *values,
565 : : bool *isnull, bool tupleIsAlive, void *state)
566 : : {
567 : 0 : GinBuildState *buildstate = (GinBuildState *) state;
568 : : MemoryContext oldCtx;
569 : : int i;
570 : :
571 : 0 : oldCtx = MemoryContextSwitchTo(buildstate->tmpCtx);
572 : :
573 : : /*
574 : : * if scan wrapped around - flush accumulated entries and start anew
575 : : *
576 : : * With parallel scans, we don't have a guarantee the scan does not start
577 : : * half-way through the relation (serial builds disable sync scans and
578 : : * always start from block 0, parallel scans require allow_sync=true).
579 : : *
580 : : * Building the posting lists assumes the TIDs are monotonic and never go
581 : : * back, and the wrap around would break that. We handle that by detecting
582 : : * the wraparound, and flushing all entries. This means we'll later see
583 : : * two separate entries with non-overlapping TID lists (which can be
584 : : * combined by merge sort).
585 : : *
586 : : * To detect a wraparound, we remember the last TID seen by each worker
587 : : * (for any key). If the next TID seen by the worker is lower, the scan
588 : : * must have wrapped around.
589 : : */
590 [ # # ]: 0 : if (ItemPointerCompare(tid, &buildstate->tid) < 0)
591 : 0 : ginFlushBuildState(buildstate, index);
592 : :
593 : : /* remember the TID we're about to process */
594 : 0 : buildstate->tid = *tid;
595 : :
596 [ # # ]: 0 : for (i = 0; i < buildstate->ginstate.origTupdesc->natts; i++)
597 : 0 : ginHeapTupleBulkInsert(buildstate, (OffsetNumber) (i + 1),
598 : 0 : values[i], isnull[i], tid);
599 : :
600 : : /*
601 : : * If we've maxed out our available memory, dump everything to the
602 : : * tuplesort. We use half the per-worker fraction of maintenance_work_mem,
603 : : * the other half is used for the tuplesort.
604 : : */
605 [ # # ]: 0 : if (buildstate->accum.allocatedMemory >= buildstate->work_mem * (Size) 1024)
606 : 0 : ginFlushBuildState(buildstate, index);
607 : :
608 : 0 : MemoryContextSwitchTo(oldCtx);
609 : 0 : }
610 : :
611 : : IndexBuildResult *
3622 tgl@sss.pgh.pa.us 612 :CBC 195 : ginbuild(Relation heap, Relation index, IndexInfo *indexInfo)
613 : : {
614 : : IndexBuildResult *result;
615 : : double reltuples;
616 : : GinBuildState buildstate;
289 tomas.vondra@postgre 617 : 195 : GinBuildState *state = &buildstate;
618 : : Buffer RootBuffer,
619 : : MetaBuffer;
620 : : ItemPointerData *list;
621 : : Datum key;
622 : : GinNullCategory category;
623 : : uint32 nlist;
624 : : MemoryContext oldCtx;
625 : : OffsetNumber attnum;
626 : :
7169 teodor@sigaev.ru 627 [ - + ]: 195 : if (RelationGetNumberOfBlocks(index) != 0)
7169 teodor@sigaev.ru 628 [ # # ]:UBC 0 : elog(ERROR, "index \"%s\" already contains data",
629 : : RelationGetRelationName(index));
630 : :
7169 teodor@sigaev.ru 631 :CBC 195 : initGinState(&buildstate.ginstate, index);
5540 tgl@sss.pgh.pa.us 632 : 195 : buildstate.indtuples = 0;
633 : 195 : memset(&buildstate.buildStats, 0, sizeof(GinStatsData));
634 : :
635 : : /* Initialize fields for parallel build too. */
289 tomas.vondra@postgre 636 : 195 : buildstate.bs_numtuples = 0;
637 : 195 : buildstate.bs_reltuples = 0;
638 : 195 : buildstate.bs_leader = NULL;
639 : 195 : memset(&buildstate.tid, 0, sizeof(ItemPointerData));
640 : :
641 : : /* initialize the meta page */
6112 tgl@sss.pgh.pa.us 642 : 195 : MetaBuffer = GinNewBuffer(index);
643 : :
644 : : /* initialize the root page */
645 : 195 : RootBuffer = GinNewBuffer(index);
646 : :
7169 teodor@sigaev.ru 647 : 195 : START_CRIT_SECTION();
6112 tgl@sss.pgh.pa.us 648 : 195 : GinInitMetabuffer(MetaBuffer);
649 : 195 : MarkBufferDirty(MetaBuffer);
650 : 195 : GinInitBuffer(RootBuffer, GIN_LEAF);
651 : 195 : MarkBufferDirty(RootBuffer);
652 : :
653 : :
654 : 195 : UnlockReleaseBuffer(MetaBuffer);
655 : 195 : UnlockReleaseBuffer(RootBuffer);
7169 teodor@sigaev.ru 656 [ - + ]: 195 : END_CRIT_SECTION();
657 : :
658 : : /* count the root as first entry page */
5540 tgl@sss.pgh.pa.us 659 : 195 : buildstate.buildStats.nEntryPages++;
660 : :
661 : : /*
662 : : * create a temporary memory context that is used to hold data not yet
663 : : * dumped out to the index
664 : : */
7169 teodor@sigaev.ru 665 : 195 : buildstate.tmpCtx = AllocSetContextCreate(CurrentMemoryContext,
666 : : "Gin build temporary context",
667 : : ALLOCSET_DEFAULT_SIZES);
668 : :
669 : : /*
670 : : * create a temporary memory context that is used for calling
671 : : * ginExtractEntries(), and can be reset after each tuple
672 : : */
3916 tgl@sss.pgh.pa.us 673 : 195 : buildstate.funcCtx = AllocSetContextCreate(CurrentMemoryContext,
674 : : "Gin build temporary context for user-defined function",
675 : : ALLOCSET_DEFAULT_SIZES);
676 : :
7169 teodor@sigaev.ru 677 : 195 : buildstate.accum.ginstate = &buildstate.ginstate;
7014 bruce@momjian.us 678 : 195 : ginInitBA(&buildstate.accum);
679 : :
680 : : /* Report table scan phase started */
289 tomas.vondra@postgre 681 : 195 : pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
682 : : PROGRESS_GIN_PHASE_INDEXBUILD_TABLESCAN);
683 : :
684 : : /*
685 : : * Attempt to launch parallel worker scan when required
686 : : *
687 : : * XXX plan_create_index_workers makes the number of workers dependent on
688 : : * maintenance_work_mem, requiring 32MB for each worker. For GIN that's
689 : : * reasonable too, because we sort the data just like btree. It does
690 : : * ignore the memory used to accumulate data in memory (set by work_mem),
691 : : * but there is no way to communicate that to plan_create_index_workers.
692 : : */
693 [ - + ]: 195 : if (indexInfo->ii_ParallelWorkers > 0)
289 tomas.vondra@postgre 694 :UBC 0 : _gin_begin_parallel(state, heap, index, indexInfo->ii_Concurrent,
695 : : indexInfo->ii_ParallelWorkers);
696 : :
697 : : /*
698 : : * If parallel build requested and at least one worker process was
699 : : * successfully launched, set up coordination state, wait for workers to
700 : : * complete. Then read all tuples from the shared tuplesort and insert
701 : : * them into the index.
702 : : *
703 : : * In serial mode, simply scan the table and build the index one index
704 : : * tuple at a time.
705 : : */
289 tomas.vondra@postgre 706 [ - + ]:CBC 195 : if (state->bs_leader)
707 : : {
708 : : SortCoordinate coordinate;
709 : :
7 michael@paquier.xyz 710 :UNC 0 : coordinate = palloc0_object(SortCoordinateData);
289 tomas.vondra@postgre 711 :UBC 0 : coordinate->isWorker = false;
712 : 0 : coordinate->nParticipants =
713 : 0 : state->bs_leader->nparticipanttuplesorts;
714 : 0 : coordinate->sharedsort = state->bs_leader->sharedsort;
715 : :
716 : : /*
717 : : * Begin leader tuplesort.
718 : : *
719 : : * In cases where parallelism is involved, the leader receives the
720 : : * same share of maintenance_work_mem as a serial sort (it is
721 : : * generally treated in the same way as a serial sort once we return).
722 : : * Parallel worker Tuplesortstates will have received only a fraction
723 : : * of maintenance_work_mem, though.
724 : : *
725 : : * We rely on the lifetime of the Leader Tuplesortstate almost not
726 : : * overlapping with any worker Tuplesortstate's lifetime. There may
727 : : * be some small overlap, but that's okay because we rely on leader
728 : : * Tuplesortstate only allocating a small, fixed amount of memory
729 : : * here. When its tuplesort_performsort() is called (by our caller),
730 : : * and significant amounts of memory are likely to be used, all
731 : : * workers must have already freed almost all memory held by their
732 : : * Tuplesortstates (they are about to go away completely, too). The
733 : : * overall effect is that maintenance_work_mem always represents an
734 : : * absolute high watermark on the amount of memory used by a CREATE
735 : : * INDEX operation, regardless of the use of parallelism or any other
736 : : * factor.
737 : : */
738 : 0 : state->bs_sortstate =
739 : 0 : tuplesort_begin_index_gin(heap, index,
740 : : maintenance_work_mem, coordinate,
741 : : TUPLESORT_NONE);
742 : :
743 : : /* scan the relation in parallel and merge per-worker results */
744 : 0 : reltuples = _gin_parallel_merge(state);
745 : :
746 : 0 : _gin_end_parallel(state->bs_leader, state);
747 : : }
748 : : else /* no parallel index build */
749 : : {
750 : : /*
751 : : * Do the heap scan. We disallow sync scan here because
752 : : * dataPlaceToPage prefers to receive tuples in TID order.
753 : : */
289 tomas.vondra@postgre 754 :CBC 195 : reltuples = table_index_build_scan(heap, index, indexInfo, false, true,
755 : : ginBuildCallback, &buildstate, NULL);
756 : :
757 : : /* dump remaining entries to the index */
758 : 195 : oldCtx = MemoryContextSwitchTo(buildstate.tmpCtx);
759 : 195 : ginBeginBAScan(&buildstate.accum);
760 : 76451 : while ((list = ginGetBAEntry(&buildstate.accum,
761 [ + + ]: 76451 : &attnum, &key, &category, &nlist)) != NULL)
762 : : {
763 : : /* there could be many entries, so be willing to abort here */
764 [ - + ]: 76256 : CHECK_FOR_INTERRUPTS();
765 : 76256 : ginEntryInsert(&buildstate.ginstate, attnum, key, category,
766 : : list, nlist, &buildstate.buildStats);
767 : : }
768 : 195 : MemoryContextSwitchTo(oldCtx);
769 : : }
770 : :
3916 tgl@sss.pgh.pa.us 771 : 195 : MemoryContextDelete(buildstate.funcCtx);
7169 teodor@sigaev.ru 772 : 195 : MemoryContextDelete(buildstate.tmpCtx);
773 : :
774 : : /*
775 : : * Update metapage stats
776 : : */
5540 tgl@sss.pgh.pa.us 777 : 195 : buildstate.buildStats.nTotalPages = RelationGetNumberOfBlocks(index);
2450 heikki.linnakangas@i 778 : 195 : ginUpdateStats(index, &buildstate.buildStats, true);
779 : :
780 : : /*
781 : : * We didn't write WAL records as we built the index, so if WAL-logging is
782 : : * required, write all pages to the WAL now.
783 : : */
784 [ + + + + : 195 : if (RelationNeedsWAL(index))
+ + + + ]
785 : : {
786 : 124 : log_newpage_range(index, MAIN_FORKNUM,
787 : : 0, RelationGetNumberOfBlocks(index),
788 : : true);
789 : : }
790 : :
791 : : /*
792 : : * Return statistics
793 : : */
7 michael@paquier.xyz 794 :GNC 195 : result = palloc_object(IndexBuildResult);
795 : :
7161 tgl@sss.pgh.pa.us 796 :CBC 195 : result->heap_tuples = reltuples;
797 : 195 : result->index_tuples = buildstate.indtuples;
798 : :
3622 799 : 195 : return result;
800 : : }
801 : :
802 : : /*
803 : : * ginbuildempty() -- build an empty gin index in the initialization fork
804 : : */
805 : : void
806 : 3 : ginbuildempty(Relation index)
807 : : {
808 : : Buffer RootBuffer,
809 : : MetaBuffer;
810 : :
811 : : /* An empty GIN index has two pages. */
847 tmunro@postgresql.or 812 : 3 : MetaBuffer = ExtendBufferedRel(BMR_REL(index), INIT_FORKNUM, NULL,
813 : : EB_LOCK_FIRST | EB_SKIP_EXTENSION_LOCK);
814 : 3 : RootBuffer = ExtendBufferedRel(BMR_REL(index), INIT_FORKNUM, NULL,
815 : : EB_LOCK_FIRST | EB_SKIP_EXTENSION_LOCK);
816 : :
817 : : /* Initialize and xlog metabuffer and root buffer. */
5467 rhaas@postgresql.org 818 : 3 : START_CRIT_SECTION();
819 : 3 : GinInitMetabuffer(MetaBuffer);
820 : 3 : MarkBufferDirty(MetaBuffer);
2967 tgl@sss.pgh.pa.us 821 : 3 : log_newpage_buffer(MetaBuffer, true);
5467 rhaas@postgresql.org 822 : 3 : GinInitBuffer(RootBuffer, GIN_LEAF);
823 : 3 : MarkBufferDirty(RootBuffer);
4396 heikki.linnakangas@i 824 : 3 : log_newpage_buffer(RootBuffer, false);
5467 rhaas@postgresql.org 825 [ - + ]: 3 : END_CRIT_SECTION();
826 : :
827 : : /* Unlock and release the buffers. */
828 : 3 : UnlockReleaseBuffer(MetaBuffer);
829 : 3 : UnlockReleaseBuffer(RootBuffer);
830 : 3 : }
831 : :
832 : : /*
833 : : * Insert index entries for a single indexable item during "normal"
834 : : * (non-fast-update) insertion
835 : : */
836 : : static void
5458 tgl@sss.pgh.pa.us 837 : 26127 : ginHeapTupleInsert(GinState *ginstate, OffsetNumber attnum,
838 : : Datum value, bool isNull,
839 : : ItemPointer item)
840 : : {
841 : : Datum *entries;
842 : : GinNullCategory *categories;
843 : : int32 i,
844 : : nentries;
845 : :
846 : 26127 : entries = ginExtractEntries(ginstate, attnum, value, isNull,
847 : : &nentries, &categories);
848 : :
7014 bruce@momjian.us 849 [ + + ]: 162477 : for (i = 0; i < nentries; i++)
5458 tgl@sss.pgh.pa.us 850 : 136358 : ginEntryInsert(ginstate, attnum, entries[i], categories[i],
851 : : item, 1, NULL);
7169 teodor@sigaev.ru 852 : 26119 : }
853 : :
854 : : bool
3622 tgl@sss.pgh.pa.us 855 : 159035 : gininsert(Relation index, Datum *values, bool *isnull,
856 : : ItemPointer ht_ctid, Relation heapRel,
857 : : IndexUniqueCheck checkUnique,
858 : : bool indexUnchanged,
859 : : IndexInfo *indexInfo)
860 : : {
3233 861 : 159035 : GinState *ginstate = (GinState *) indexInfo->ii_AmCache;
862 : : MemoryContext oldCtx;
863 : : MemoryContext insertCtx;
864 : : int i;
865 : :
866 : : /* Initialize GinState cache if first call in this statement */
867 [ + + ]: 159035 : if (ginstate == NULL)
868 : : {
869 : 519 : oldCtx = MemoryContextSwitchTo(indexInfo->ii_Context);
7 michael@paquier.xyz 870 :GNC 519 : ginstate = palloc_object(GinState);
3233 tgl@sss.pgh.pa.us 871 :CBC 519 : initGinState(ginstate, index);
384 peter@eisentraut.org 872 : 519 : indexInfo->ii_AmCache = ginstate;
3233 tgl@sss.pgh.pa.us 873 : 519 : MemoryContextSwitchTo(oldCtx);
874 : : }
875 : :
7169 teodor@sigaev.ru 876 : 159035 : insertCtx = AllocSetContextCreate(CurrentMemoryContext,
877 : : "Gin insert temporary context",
878 : : ALLOCSET_DEFAULT_SIZES);
879 : :
880 : 159035 : oldCtx = MemoryContextSwitchTo(insertCtx);
881 : :
6033 bruce@momjian.us 882 [ + - - + : 159035 : if (GinGetUseFastUpdate(index))
+ + + + ]
6112 tgl@sss.pgh.pa.us 883 : 132905 : {
884 : : GinTupleCollector collector;
885 : :
886 : 132908 : memset(&collector, 0, sizeof(GinTupleCollector));
887 : :
3233 888 [ + + ]: 325855 : for (i = 0; i < ginstate->origTupdesc->natts; i++)
889 : 192947 : ginHeapTupleFastCollect(ginstate, &collector,
5458 890 : 192947 : (OffsetNumber) (i + 1),
891 : 192947 : values[i], isnull[i],
892 : : ht_ctid);
893 : :
3233 894 : 132908 : ginHeapTupleFastInsert(ginstate, &collector);
895 : : }
896 : : else
897 : : {
898 [ + + ]: 52246 : for (i = 0; i < ginstate->origTupdesc->natts; i++)
899 : 26127 : ginHeapTupleInsert(ginstate, (OffsetNumber) (i + 1),
5458 900 : 26127 : values[i], isnull[i],
901 : : ht_ctid);
902 : : }
903 : :
7169 teodor@sigaev.ru 904 : 159024 : MemoryContextSwitchTo(oldCtx);
905 : 159024 : MemoryContextDelete(insertCtx);
906 : :
3622 tgl@sss.pgh.pa.us 907 : 159024 : return false;
908 : : }
909 : :
910 : : /*
911 : : * Create parallel context, and launch workers for leader.
912 : : *
913 : : * buildstate argument should be initialized (with the exception of the
914 : : * tuplesort states, which may later be created based on shared
915 : : * state initially set up here).
916 : : *
917 : : * isconcurrent indicates if operation is CREATE INDEX CONCURRENTLY.
918 : : *
919 : : * request is the target number of parallel worker processes to launch.
920 : : *
921 : : * Sets buildstate's GinLeader, which caller must use to shut down parallel
922 : : * mode by passing it to _gin_end_parallel() at the very end of its index
923 : : * build. If not even a single worker process can be launched, this is
924 : : * never set, and caller should proceed with a serial index build.
925 : : */
926 : : static void
289 tomas.vondra@postgre 927 :UBC 0 : _gin_begin_parallel(GinBuildState *buildstate, Relation heap, Relation index,
928 : : bool isconcurrent, int request)
929 : : {
930 : : ParallelContext *pcxt;
931 : : int scantuplesortstates;
932 : : Snapshot snapshot;
933 : : Size estginshared;
934 : : Size estsort;
935 : : GinBuildShared *ginshared;
936 : : Sharedsort *sharedsort;
7 michael@paquier.xyz 937 :UNC 0 : GinLeader *ginleader = palloc0_object(GinLeader);
938 : : WalUsage *walusage;
939 : : BufferUsage *bufferusage;
289 tomas.vondra@postgre 940 :UBC 0 : bool leaderparticipates = true;
941 : : int querylen;
942 : :
943 : : #ifdef DISABLE_LEADER_PARTICIPATION
944 : : leaderparticipates = false;
945 : : #endif
946 : :
947 : : /*
948 : : * Enter parallel mode, and create context for parallel build of gin index
949 : : */
950 : 0 : EnterParallelMode();
951 [ # # ]: 0 : Assert(request > 0);
952 : 0 : pcxt = CreateParallelContext("postgres", "_gin_parallel_build_main",
953 : : request);
954 : :
955 [ # # ]: 0 : scantuplesortstates = leaderparticipates ? request + 1 : request;
956 : :
957 : : /*
958 : : * Prepare for scan of the base relation. In a normal index build, we use
959 : : * SnapshotAny because we must retrieve all tuples and do our own time
960 : : * qual checks (because we have to index RECENTLY_DEAD tuples). In a
961 : : * concurrent build, we take a regular MVCC snapshot and index whatever's
962 : : * live according to that.
963 : : */
964 [ # # ]: 0 : if (!isconcurrent)
965 : 0 : snapshot = SnapshotAny;
966 : : else
967 : 0 : snapshot = RegisterSnapshot(GetTransactionSnapshot());
968 : :
969 : : /*
970 : : * Estimate size for our own PARALLEL_KEY_GIN_SHARED workspace.
971 : : */
972 : 0 : estginshared = _gin_parallel_estimate_shared(heap, snapshot);
973 : 0 : shm_toc_estimate_chunk(&pcxt->estimator, estginshared);
974 : 0 : estsort = tuplesort_estimate_shared(scantuplesortstates);
975 : 0 : shm_toc_estimate_chunk(&pcxt->estimator, estsort);
976 : :
977 : 0 : shm_toc_estimate_keys(&pcxt->estimator, 2);
978 : :
979 : : /*
980 : : * Estimate space for WalUsage and BufferUsage -- PARALLEL_KEY_WAL_USAGE
981 : : * and PARALLEL_KEY_BUFFER_USAGE.
982 : : *
983 : : * If there are no extensions loaded that care, we could skip this. We
984 : : * have no way of knowing whether anyone's looking at pgWalUsage or
985 : : * pgBufferUsage, so do it unconditionally.
986 : : */
987 : 0 : shm_toc_estimate_chunk(&pcxt->estimator,
988 : : mul_size(sizeof(WalUsage), pcxt->nworkers));
989 : 0 : shm_toc_estimate_keys(&pcxt->estimator, 1);
990 : 0 : shm_toc_estimate_chunk(&pcxt->estimator,
991 : : mul_size(sizeof(BufferUsage), pcxt->nworkers));
992 : 0 : shm_toc_estimate_keys(&pcxt->estimator, 1);
993 : :
994 : : /* Finally, estimate PARALLEL_KEY_QUERY_TEXT space */
995 [ # # ]: 0 : if (debug_query_string)
996 : : {
997 : 0 : querylen = strlen(debug_query_string);
998 : 0 : shm_toc_estimate_chunk(&pcxt->estimator, querylen + 1);
999 : 0 : shm_toc_estimate_keys(&pcxt->estimator, 1);
1000 : : }
1001 : : else
1002 : 0 : querylen = 0; /* keep compiler quiet */
1003 : :
1004 : : /* Everyone's had a chance to ask for space, so now create the DSM */
1005 : 0 : InitializeParallelDSM(pcxt);
1006 : :
1007 : : /* If no DSM segment was available, back out (do serial build) */
1008 [ # # ]: 0 : if (pcxt->seg == NULL)
1009 : : {
1010 [ # # # # ]: 0 : if (IsMVCCSnapshot(snapshot))
1011 : 0 : UnregisterSnapshot(snapshot);
1012 : 0 : DestroyParallelContext(pcxt);
1013 : 0 : ExitParallelMode();
1014 : 0 : return;
1015 : : }
1016 : :
1017 : : /* Store shared build state, for which we reserved space */
1018 : 0 : ginshared = (GinBuildShared *) shm_toc_allocate(pcxt->toc, estginshared);
1019 : : /* Initialize immutable state */
1020 : 0 : ginshared->heaprelid = RelationGetRelid(heap);
1021 : 0 : ginshared->indexrelid = RelationGetRelid(index);
1022 : 0 : ginshared->isconcurrent = isconcurrent;
1023 : 0 : ginshared->scantuplesortstates = scantuplesortstates;
1024 : :
1025 : 0 : ConditionVariableInit(&ginshared->workersdonecv);
1026 : 0 : SpinLockInit(&ginshared->mutex);
1027 : :
1028 : : /* Initialize mutable state */
1029 : 0 : ginshared->nparticipantsdone = 0;
1030 : 0 : ginshared->reltuples = 0.0;
1031 : 0 : ginshared->indtuples = 0.0;
1032 : :
1033 : 0 : table_parallelscan_initialize(heap,
1034 : : ParallelTableScanFromGinBuildShared(ginshared),
1035 : : snapshot);
1036 : :
1037 : : /*
1038 : : * Store shared tuplesort-private state, for which we reserved space.
1039 : : * Then, initialize opaque state using tuplesort routine.
1040 : : */
1041 : 0 : sharedsort = (Sharedsort *) shm_toc_allocate(pcxt->toc, estsort);
1042 : 0 : tuplesort_initialize_shared(sharedsort, scantuplesortstates,
1043 : : pcxt->seg);
1044 : :
1045 : 0 : shm_toc_insert(pcxt->toc, PARALLEL_KEY_GIN_SHARED, ginshared);
1046 : 0 : shm_toc_insert(pcxt->toc, PARALLEL_KEY_TUPLESORT, sharedsort);
1047 : :
1048 : : /* Store query string for workers */
1049 [ # # ]: 0 : if (debug_query_string)
1050 : : {
1051 : : char *sharedquery;
1052 : :
1053 : 0 : sharedquery = (char *) shm_toc_allocate(pcxt->toc, querylen + 1);
1054 : 0 : memcpy(sharedquery, debug_query_string, querylen + 1);
1055 : 0 : shm_toc_insert(pcxt->toc, PARALLEL_KEY_QUERY_TEXT, sharedquery);
1056 : : }
1057 : :
1058 : : /*
1059 : : * Allocate space for each worker's WalUsage and BufferUsage; no need to
1060 : : * initialize.
1061 : : */
1062 : 0 : walusage = shm_toc_allocate(pcxt->toc,
1063 : 0 : mul_size(sizeof(WalUsage), pcxt->nworkers));
1064 : 0 : shm_toc_insert(pcxt->toc, PARALLEL_KEY_WAL_USAGE, walusage);
1065 : 0 : bufferusage = shm_toc_allocate(pcxt->toc,
1066 : 0 : mul_size(sizeof(BufferUsage), pcxt->nworkers));
1067 : 0 : shm_toc_insert(pcxt->toc, PARALLEL_KEY_BUFFER_USAGE, bufferusage);
1068 : :
1069 : : /* Launch workers, saving status for leader/caller */
1070 : 0 : LaunchParallelWorkers(pcxt);
1071 : 0 : ginleader->pcxt = pcxt;
1072 : 0 : ginleader->nparticipanttuplesorts = pcxt->nworkers_launched;
1073 [ # # ]: 0 : if (leaderparticipates)
1074 : 0 : ginleader->nparticipanttuplesorts++;
1075 : 0 : ginleader->ginshared = ginshared;
1076 : 0 : ginleader->sharedsort = sharedsort;
1077 : 0 : ginleader->snapshot = snapshot;
1078 : 0 : ginleader->walusage = walusage;
1079 : 0 : ginleader->bufferusage = bufferusage;
1080 : :
1081 : : /* If no workers were successfully launched, back out (do serial build) */
1082 [ # # ]: 0 : if (pcxt->nworkers_launched == 0)
1083 : : {
1084 : 0 : _gin_end_parallel(ginleader, NULL);
1085 : 0 : return;
1086 : : }
1087 : :
1088 : : /* Save leader state now that it's clear build will be parallel */
1089 : 0 : buildstate->bs_leader = ginleader;
1090 : :
1091 : : /* Join heap scan ourselves */
1092 [ # # ]: 0 : if (leaderparticipates)
1093 : 0 : _gin_leader_participate_as_worker(buildstate, heap, index);
1094 : :
1095 : : /*
1096 : : * Caller needs to wait for all launched workers when we return. Make
1097 : : * sure that the failure-to-start case will not hang forever.
1098 : : */
1099 : 0 : WaitForParallelWorkersToAttach(pcxt);
1100 : : }
1101 : :
1102 : : /*
1103 : : * Shut down workers, destroy parallel context, and end parallel mode.
1104 : : */
1105 : : static void
1106 : 0 : _gin_end_parallel(GinLeader *ginleader, GinBuildState *state)
1107 : : {
1108 : : int i;
1109 : :
1110 : : /* Shutdown worker processes */
1111 : 0 : WaitForParallelWorkersToFinish(ginleader->pcxt);
1112 : :
1113 : : /*
1114 : : * Next, accumulate WAL usage. (This must wait for the workers to finish,
1115 : : * or we might get incomplete data.)
1116 : : */
1117 [ # # ]: 0 : for (i = 0; i < ginleader->pcxt->nworkers_launched; i++)
1118 : 0 : InstrAccumParallelQuery(&ginleader->bufferusage[i], &ginleader->walusage[i]);
1119 : :
1120 : : /* Free last reference to MVCC snapshot, if one was used */
1121 [ # # # # ]: 0 : if (IsMVCCSnapshot(ginleader->snapshot))
1122 : 0 : UnregisterSnapshot(ginleader->snapshot);
1123 : 0 : DestroyParallelContext(ginleader->pcxt);
1124 : 0 : ExitParallelMode();
1125 : 0 : }
1126 : :
1127 : : /*
1128 : : * Within leader, wait for end of heap scan.
1129 : : *
1130 : : * When called, parallel heap scan started by _gin_begin_parallel() will
1131 : : * already be underway within worker processes (when leader participates
1132 : : * as a worker, we should end up here just as workers are finishing).
1133 : : *
1134 : : * Returns the total number of heap tuples scanned.
1135 : : */
1136 : : static double
1137 : 0 : _gin_parallel_heapscan(GinBuildState *state)
1138 : : {
1139 : 0 : GinBuildShared *ginshared = state->bs_leader->ginshared;
1140 : : int nparticipanttuplesorts;
1141 : :
1142 : 0 : nparticipanttuplesorts = state->bs_leader->nparticipanttuplesorts;
1143 : : for (;;)
1144 : : {
1145 [ # # ]: 0 : SpinLockAcquire(&ginshared->mutex);
1146 [ # # ]: 0 : if (ginshared->nparticipantsdone == nparticipanttuplesorts)
1147 : : {
1148 : : /* copy the data into leader state */
1149 : 0 : state->bs_reltuples = ginshared->reltuples;
1150 : 0 : state->bs_numtuples = ginshared->indtuples;
1151 : :
1152 : 0 : SpinLockRelease(&ginshared->mutex);
1153 : 0 : break;
1154 : : }
1155 : 0 : SpinLockRelease(&ginshared->mutex);
1156 : :
1157 : 0 : ConditionVariableSleep(&ginshared->workersdonecv,
1158 : : WAIT_EVENT_PARALLEL_CREATE_INDEX_SCAN);
1159 : : }
1160 : :
1161 : 0 : ConditionVariableCancelSleep();
1162 : :
1163 : 0 : return state->bs_reltuples;
1164 : : }
1165 : :
1166 : : /*
1167 : : * Buffer used to accumulate TIDs from multiple GinTuples for the same key
1168 : : * (we read these from the tuplesort, sorted by the key).
1169 : : *
1170 : : * This is similar to BuildAccumulator in that it's used to collect TIDs
1171 : : * in memory before inserting them into the index, but it's much simpler
1172 : : * as it only deals with a single index key at a time.
1173 : : *
1174 : : * When adding TIDs to the buffer, we make sure to keep them sorted, both
1175 : : * during the initial table scan (and detecting when the scan wraps around),
1176 : : * and during merging (where we do mergesort).
1177 : : */
1178 : : typedef struct GinBuffer
1179 : : {
1180 : : OffsetNumber attnum;
1181 : : GinNullCategory category;
1182 : : Datum key; /* 0 if no key (and keylen == 0) */
1183 : : Size keylen; /* number of bytes (not typlen) */
1184 : :
1185 : : /* type info */
1186 : : int16 typlen;
1187 : : bool typbyval;
1188 : :
1189 : : /* Number of TIDs to collect before attempt to write some out. */
1190 : : int maxitems;
1191 : :
1192 : : /* array of TID values */
1193 : : int nitems;
1194 : : int nfrozen;
1195 : : SortSupport ssup; /* for sorting/comparing keys */
1196 : : ItemPointerData *items;
1197 : : } GinBuffer;
1198 : :
1199 : : /*
1200 : : * Check that TID array contains valid values, and that it's sorted (if we
1201 : : * expect it to be).
1202 : : */
1203 : : static void
1204 : 0 : AssertCheckItemPointers(GinBuffer *buffer)
1205 : : {
1206 : : #ifdef USE_ASSERT_CHECKING
1207 : : /* we should not have a buffer with no TIDs to sort */
1208 [ # # ]: 0 : Assert(buffer->items != NULL);
1209 [ # # ]: 0 : Assert(buffer->nitems > 0);
1210 : :
1211 [ # # ]: 0 : for (int i = 0; i < buffer->nitems; i++)
1212 : : {
1213 [ # # ]: 0 : Assert(ItemPointerIsValid(&buffer->items[i]));
1214 : :
1215 : : /* don't check ordering for the first TID item */
1216 [ # # ]: 0 : if (i == 0)
1217 : 0 : continue;
1218 : :
1219 [ # # ]: 0 : Assert(ItemPointerCompare(&buffer->items[i - 1], &buffer->items[i]) < 0);
1220 : : }
1221 : : #endif
1222 : 0 : }
1223 : :
1224 : : /*
1225 : : * GinBuffer checks
1226 : : *
1227 : : * Make sure the nitems/items fields are consistent (either the array is empty
1228 : : * or not empty, the fields need to agree). If there are items, check ordering.
1229 : : */
1230 : : static void
1231 : 0 : AssertCheckGinBuffer(GinBuffer *buffer)
1232 : : {
1233 : : #ifdef USE_ASSERT_CHECKING
1234 : : /* if we have any items, the array must exist */
1235 [ # # # # ]: 0 : Assert(!((buffer->nitems > 0) && (buffer->items == NULL)));
1236 : :
1237 : : /*
1238 : : * The buffer may be empty, in which case we must not call the check of
1239 : : * item pointers, because that assumes non-emptiness.
1240 : : */
1241 [ # # ]: 0 : if (buffer->nitems == 0)
1242 : 0 : return;
1243 : :
1244 : : /* Make sure the item pointers are valid and sorted. */
1245 : 0 : AssertCheckItemPointers(buffer);
1246 : : #endif
1247 : : }
1248 : :
1249 : : /*
1250 : : * GinBufferInit
1251 : : * Initialize buffer to store tuples for a GIN index.
1252 : : *
1253 : : * Initialize the buffer used to accumulate TID for a single key at a time
1254 : : * (we process the data sorted), so we know when we received all data for
1255 : : * a given key.
1256 : : *
1257 : : * Initializes sort support procedures for all index attributes.
1258 : : */
1259 : : static GinBuffer *
1260 : 0 : GinBufferInit(Relation index)
1261 : : {
7 michael@paquier.xyz 1262 :UNC 0 : GinBuffer *buffer = palloc0_object(GinBuffer);
1263 : : int i,
1264 : : nKeys;
289 tomas.vondra@postgre 1265 :UBC 0 : TupleDesc desc = RelationGetDescr(index);
1266 : :
1267 : : /*
1268 : : * How many items can we fit into the memory limit? We don't want to end
1269 : : * with too many TIDs. and 64kB seems more than enough. But maybe this
1270 : : * should be tied to maintenance_work_mem or something like that?
1271 : : */
288 1272 : 0 : buffer->maxitems = (64 * 1024L) / sizeof(ItemPointerData);
1273 : :
289 1274 : 0 : nKeys = IndexRelationGetNumberOfKeyAttributes(index);
1275 : :
7 michael@paquier.xyz 1276 :UNC 0 : buffer->ssup = palloc0_array(SortSupportData, nKeys);
1277 : :
1278 : : /*
1279 : : * Lookup ordering operator for the index key data type, and initialize
1280 : : * the sort support function.
1281 : : */
289 tomas.vondra@postgre 1282 [ # # ]:UBC 0 : for (i = 0; i < nKeys; i++)
1283 : : {
1284 : : Oid cmpFunc;
1285 : 0 : SortSupport sortKey = &buffer->ssup[i];
1286 : 0 : Form_pg_attribute att = TupleDescAttr(desc, i);
1287 : :
1288 : 0 : sortKey->ssup_cxt = CurrentMemoryContext;
1289 : 0 : sortKey->ssup_collation = index->rd_indcollation[i];
1290 : :
1291 [ # # ]: 0 : if (!OidIsValid(sortKey->ssup_collation))
1292 : 0 : sortKey->ssup_collation = DEFAULT_COLLATION_OID;
1293 : :
1294 : 0 : sortKey->ssup_nulls_first = false;
1295 : 0 : sortKey->ssup_attno = i + 1;
1296 : 0 : sortKey->abbreviate = false;
1297 : :
1298 [ # # ]: 0 : Assert(sortKey->ssup_attno != 0);
1299 : :
1300 : : /*
1301 : : * If the compare proc isn't specified in the opclass definition, look
1302 : : * up the index key type's default btree comparator.
1303 : : */
1304 : 0 : cmpFunc = index_getprocid(index, i + 1, GIN_COMPARE_PROC);
1305 [ # # ]: 0 : if (cmpFunc == InvalidOid)
1306 : : {
1307 : : TypeCacheEntry *typentry;
1308 : :
1309 : 0 : typentry = lookup_type_cache(att->atttypid,
1310 : : TYPECACHE_CMP_PROC_FINFO);
1311 [ # # ]: 0 : if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
1312 [ # # ]: 0 : ereport(ERROR,
1313 : : (errcode(ERRCODE_UNDEFINED_FUNCTION),
1314 : : errmsg("could not identify a comparison function for type %s",
1315 : : format_type_be(att->atttypid))));
1316 : :
1317 : 0 : cmpFunc = typentry->cmp_proc_finfo.fn_oid;
1318 : : }
1319 : :
1320 : 0 : PrepareSortSupportComparisonShim(cmpFunc, sortKey);
1321 : : }
1322 : :
1323 : 0 : return buffer;
1324 : : }
1325 : :
1326 : : /* Is the buffer empty, i.e. has no TID values in the array? */
1327 : : static bool
1328 : 0 : GinBufferIsEmpty(GinBuffer *buffer)
1329 : : {
1330 : 0 : return (buffer->nitems == 0);
1331 : : }
1332 : :
1333 : : /*
1334 : : * GinBufferKeyEquals
1335 : : * Can the buffer store TIDs for the provided GIN tuple (same key)?
1336 : : *
1337 : : * Compare if the tuple matches the already accumulated data in the GIN
1338 : : * buffer. Compare scalar fields first, before the actual key.
1339 : : *
1340 : : * Returns true if the key matches, and the TID belongs to the buffer, or
1341 : : * false if the key does not match.
1342 : : */
1343 : : static bool
1344 : 0 : GinBufferKeyEquals(GinBuffer *buffer, GinTuple *tup)
1345 : : {
1346 : : int r;
1347 : : Datum tupkey;
1348 : :
1349 : 0 : AssertCheckGinBuffer(buffer);
1350 : :
1351 [ # # ]: 0 : if (tup->attrnum != buffer->attnum)
1352 : 0 : return false;
1353 : :
1354 : : /* same attribute should have the same type info */
1355 [ # # ]: 0 : Assert(tup->typbyval == buffer->typbyval);
1356 [ # # ]: 0 : Assert(tup->typlen == buffer->typlen);
1357 : :
1358 [ # # ]: 0 : if (tup->category != buffer->category)
1359 : 0 : return false;
1360 : :
1361 : : /*
1362 : : * For NULL/empty keys, this means equality, for normal keys we need to
1363 : : * compare the actual key value.
1364 : : */
1365 [ # # ]: 0 : if (buffer->category != GIN_CAT_NORM_KEY)
1366 : 0 : return true;
1367 : :
1368 : : /*
1369 : : * For the tuple, get either the first sizeof(Datum) bytes for byval
1370 : : * types, or a pointer to the beginning of the data array.
1371 : : */
1372 [ # # ]: 0 : tupkey = (buffer->typbyval) ? *(Datum *) tup->data : PointerGetDatum(tup->data);
1373 : :
1374 : 0 : r = ApplySortComparator(buffer->key, false,
1375 : : tupkey, false,
1376 : 0 : &buffer->ssup[buffer->attnum - 1]);
1377 : :
1378 : 0 : return (r == 0);
1379 : : }
1380 : :
1381 : : /*
1382 : : * GinBufferShouldTrim
1383 : : * Should we trim the list of item pointers?
1384 : : *
1385 : : * By trimming we understand writing out and removing the tuple IDs that
1386 : : * we know can't change by future merges. We can deduce the TID up to which
1387 : : * this is guaranteed from the "first" TID in each GIN tuple, which provides
1388 : : * a "horizon" (for a given key) thanks to the sort.
1389 : : *
1390 : : * We don't want to do this too often - compressing longer TID lists is more
1391 : : * efficient. But we also don't want to accumulate too many TIDs, for two
1392 : : * reasons. First, it consumes memory and we might exceed maintenance_work_mem
1393 : : * (or whatever limit applies), even if that's unlikely because TIDs are very
1394 : : * small so we can fit a lot of them. Second, and more importantly, long TID
1395 : : * lists are an issue if the scan wraps around, because a key may get a very
1396 : : * wide list (with min/max TID for that key), forcing "full" mergesorts for
1397 : : * every list merged into it (instead of the efficient append).
1398 : : *
1399 : : * So we look at two things when deciding if to trim - if the resulting list
1400 : : * (after adding TIDs from the new tuple) would be too long, and if there is
1401 : : * enough TIDs to trim (with values less than "first" TID from the new tuple),
1402 : : * we do the trim. By enough we mean at least 128 TIDs (mostly an arbitrary
1403 : : * number).
1404 : : *
1405 : : * We try freezing TIDs at the beginning of the list first, before attempting
1406 : : * to trim the buffer. This may allow trimming the data earlier, reducing the
1407 : : * memory usage and excluding it from the mergesort.
1408 : : */
1409 : : static bool
288 1410 : 0 : GinBufferShouldTrim(GinBuffer *buffer, GinTuple *tup)
1411 : : {
1412 : : /*
1413 : : * Check if the last TID in the current list is frozen. This is the case
1414 : : * when merging non-overlapping lists, e.g. in each parallel worker.
1415 : : */
43 tomas.vondra@postgre 1416 [ # # # # ]:UNC 0 : if ((buffer->nitems > 0) &&
1417 : 0 : (ItemPointerCompare(&buffer->items[buffer->nitems - 1],
1418 : 0 : GinTupleGetFirst(tup)) == 0))
1419 : 0 : buffer->nfrozen = buffer->nitems;
1420 : :
1421 : : /*
1422 : : * Now find the last TID we know to be frozen, i.e. the last TID right
1423 : : * before the new GIN tuple.
1424 : : *
1425 : : * Start with the first not-yet-frozen tuple, and walk until we find the
1426 : : * first TID that's higher. If we already know the whole list is frozen
1427 : : * (i.e. nfrozen == nitems), this does nothing.
1428 : : *
1429 : : * XXX This might do a binary search for sufficiently long lists, but it
1430 : : * does not seem worth the complexity. Overlapping lists should be rare
1431 : : * common, TID comparisons are cheap, and we should quickly freeze most of
1432 : : * the list.
1433 : : */
1434 [ # # ]: 0 : for (int i = buffer->nfrozen; i < buffer->nitems; i++)
1435 : : {
1436 : : /* Is the TID after the first TID of the new tuple? Can't freeze. */
1437 [ # # ]: 0 : if (ItemPointerCompare(&buffer->items[i],
1438 : 0 : GinTupleGetFirst(tup)) > 0)
1439 : 0 : break;
1440 : :
1441 : 0 : buffer->nfrozen++;
1442 : : }
1443 : :
1444 : : /* not enough TIDs to trim (1024 is somewhat arbitrary number) */
288 tomas.vondra@postgre 1445 [ # # ]:UBC 0 : if (buffer->nfrozen < 1024)
1446 : 0 : return false;
1447 : :
1448 : : /* no need to trim if we have not hit the memory limit yet */
1449 [ # # ]: 0 : if ((buffer->nitems + tup->nitems) < buffer->maxitems)
1450 : 0 : return false;
1451 : :
1452 : : /*
1453 : : * OK, we have enough frozen TIDs to flush, and we have hit the memory
1454 : : * limit, so it's time to write it out.
1455 : : */
1456 : 0 : return true;
1457 : : }
1458 : :
1459 : : /*
1460 : : * GinBufferStoreTuple
1461 : : * Add data (especially TID list) from a GIN tuple to the buffer.
1462 : : *
1463 : : * The buffer is expected to be empty (in which case it's initialized), or
1464 : : * having the same key. The TID values from the tuple are combined with the
1465 : : * stored values using a merge sort.
1466 : : *
1467 : : * The tuples (for the same key) are expected to be sorted by first TID. But
1468 : : * this does not guarantee the lists do not overlap, especially in the leader,
1469 : : * because the workers process interleaving data. There should be no overlaps
1470 : : * in a single worker - it could happen when the parallel scan wraps around,
1471 : : * but we detect that and flush the data (see ginBuildCallbackParallel).
1472 : : *
1473 : : * By sorting the GinTuple not only by key, but also by the first TID, we make
1474 : : * it more less likely the lists will overlap during merge. We merge them using
1475 : : * mergesort, but it's cheaper to just append one list to the other.
1476 : : *
1477 : : * How often can the lists overlap? There should be no overlaps in workers,
1478 : : * and in the leader we can see overlaps between lists built by different
1479 : : * workers. But the workers merge the items as much as possible, so there
1480 : : * should not be too many.
1481 : : */
1482 : : static void
289 1483 : 0 : GinBufferStoreTuple(GinBuffer *buffer, GinTuple *tup)
1484 : : {
1485 : : ItemPointerData *items;
1486 : : Datum key;
1487 : :
1488 : 0 : AssertCheckGinBuffer(buffer);
1489 : :
288 1490 : 0 : key = _gin_parse_tuple_key(tup);
1491 : 0 : items = _gin_parse_tuple_items(tup);
1492 : :
1493 : : /* if the buffer is empty, set the fields (and copy the key) */
289 1494 [ # # ]: 0 : if (GinBufferIsEmpty(buffer))
1495 : : {
1496 : 0 : buffer->category = tup->category;
1497 : 0 : buffer->keylen = tup->keylen;
1498 : 0 : buffer->attnum = tup->attrnum;
1499 : :
1500 : 0 : buffer->typlen = tup->typlen;
1501 : 0 : buffer->typbyval = tup->typbyval;
1502 : :
1503 [ # # ]: 0 : if (tup->category == GIN_CAT_NORM_KEY)
1504 : 0 : buffer->key = datumCopy(key, buffer->typbyval, buffer->typlen);
1505 : : else
1506 : 0 : buffer->key = (Datum) 0;
1507 : : }
1508 : :
1509 : : /* add the new TIDs into the buffer, combine using merge-sort */
1510 : : {
1511 : : int nnew;
1512 : : ItemPointer new;
1513 : :
1514 : : /*
1515 : : * Resize the array - we do this first, because we'll dereference the
1516 : : * first unfrozen TID, which would fail if the array is NULL. We'll
1517 : : * still pass 0 as number of elements in that array though.
1518 : : */
288 1519 [ # # ]: 0 : if (buffer->items == NULL)
1520 : 0 : buffer->items = palloc((buffer->nitems + tup->nitems) * sizeof(ItemPointerData));
1521 : : else
1522 : 0 : buffer->items = repalloc(buffer->items,
1523 : 0 : (buffer->nitems + tup->nitems) * sizeof(ItemPointerData));
1524 : :
242 michael@paquier.xyz 1525 : 0 : new = ginMergeItemPointers(&buffer->items[buffer->nfrozen], /* first unfrozen */
288 tomas.vondra@postgre 1526 : 0 : (buffer->nitems - buffer->nfrozen), /* num of unfrozen */
289 1527 : 0 : items, tup->nitems, &nnew);
1528 : :
288 1529 [ # # ]: 0 : Assert(nnew == (tup->nitems + (buffer->nitems - buffer->nfrozen)));
1530 : :
1531 : 0 : memcpy(&buffer->items[buffer->nfrozen], new,
1532 : : nnew * sizeof(ItemPointerData));
1533 : :
1534 : 0 : pfree(new);
1535 : :
1536 : 0 : buffer->nitems += tup->nitems;
1537 : :
289 1538 : 0 : AssertCheckItemPointers(buffer);
1539 : : }
1540 : :
1541 : : /* free the decompressed TID list */
288 1542 : 0 : pfree(items);
289 1543 : 0 : }
1544 : :
1545 : : /*
1546 : : * GinBufferReset
1547 : : * Reset the buffer into a state as if it contains no data.
1548 : : */
1549 : : static void
1550 : 0 : GinBufferReset(GinBuffer *buffer)
1551 : : {
1552 [ # # ]: 0 : Assert(!GinBufferIsEmpty(buffer));
1553 : :
1554 : : /* release byref values, do nothing for by-val ones */
1555 [ # # # # ]: 0 : if ((buffer->category == GIN_CAT_NORM_KEY) && !buffer->typbyval)
1556 : 0 : pfree(DatumGetPointer(buffer->key));
1557 : :
1558 : : /*
1559 : : * Not required, but makes it more likely to trigger NULL dereference if
1560 : : * using the value incorrectly, etc.
1561 : : */
1562 : 0 : buffer->key = (Datum) 0;
1563 : :
1564 : 0 : buffer->attnum = 0;
1565 : 0 : buffer->category = 0;
1566 : 0 : buffer->keylen = 0;
1567 : 0 : buffer->nitems = 0;
288 1568 : 0 : buffer->nfrozen = 0;
1569 : :
289 1570 : 0 : buffer->typlen = 0;
1571 : 0 : buffer->typbyval = 0;
1572 : 0 : }
1573 : :
1574 : : /*
1575 : : * GinBufferTrim
1576 : : * Discard the "frozen" part of the TID list (which should have been
1577 : : * written to disk/index before this call).
1578 : : */
1579 : : static void
288 1580 : 0 : GinBufferTrim(GinBuffer *buffer)
1581 : : {
1582 [ # # # # ]: 0 : Assert((buffer->nfrozen > 0) && (buffer->nfrozen <= buffer->nitems));
1583 : :
1584 : 0 : memmove(&buffer->items[0], &buffer->items[buffer->nfrozen],
1585 : 0 : sizeof(ItemPointerData) * (buffer->nitems - buffer->nfrozen));
1586 : :
1587 : 0 : buffer->nitems -= buffer->nfrozen;
1588 : 0 : buffer->nfrozen = 0;
1589 : 0 : }
1590 : :
1591 : : /*
1592 : : * GinBufferFree
1593 : : * Release memory associated with the GinBuffer (including TID array).
1594 : : */
1595 : : static void
289 1596 : 0 : GinBufferFree(GinBuffer *buffer)
1597 : : {
1598 [ # # ]: 0 : if (buffer->items)
1599 : 0 : pfree(buffer->items);
1600 : :
1601 : : /* release byref values, do nothing for by-val ones */
1602 [ # # ]: 0 : if (!GinBufferIsEmpty(buffer) &&
1603 [ # # # # ]: 0 : (buffer->category == GIN_CAT_NORM_KEY) && !buffer->typbyval)
1604 : 0 : pfree(DatumGetPointer(buffer->key));
1605 : :
1606 : 0 : pfree(buffer);
1607 : 0 : }
1608 : :
1609 : : /*
1610 : : * GinBufferCanAddKey
1611 : : * Check if a given GIN tuple can be added to the current buffer.
1612 : : *
1613 : : * Returns true if the buffer is either empty or for the same index key.
1614 : : */
1615 : : static bool
1616 : 0 : GinBufferCanAddKey(GinBuffer *buffer, GinTuple *tup)
1617 : : {
1618 : : /* empty buffer can accept data for any key */
1619 [ # # ]: 0 : if (GinBufferIsEmpty(buffer))
1620 : 0 : return true;
1621 : :
1622 : : /* otherwise just data for the same key */
1623 : 0 : return GinBufferKeyEquals(buffer, tup);
1624 : : }
1625 : :
1626 : : /*
1627 : : * Within leader, wait for end of heap scan and merge per-worker results.
1628 : : *
1629 : : * After waiting for all workers to finish, merge the per-worker results into
1630 : : * the complete index. The results from each worker are sorted by block number
1631 : : * (start of the page range). While combining the per-worker results we merge
1632 : : * summaries for the same page range, and also fill-in empty summaries for
1633 : : * ranges without any tuples.
1634 : : *
1635 : : * Returns the total number of heap tuples scanned.
1636 : : */
1637 : : static double
1638 : 0 : _gin_parallel_merge(GinBuildState *state)
1639 : : {
1640 : : GinTuple *tup;
1641 : : Size tuplen;
1642 : 0 : double reltuples = 0;
1643 : : GinBuffer *buffer;
1644 : :
1645 : : /* GIN tuples from workers, merged by leader */
1646 : 0 : double numtuples = 0;
1647 : :
1648 : : /* wait for workers to scan table and produce partial results */
1649 : 0 : reltuples = _gin_parallel_heapscan(state);
1650 : :
1651 : : /* Execute the sort */
1652 : 0 : pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
1653 : : PROGRESS_GIN_PHASE_PERFORMSORT_2);
1654 : :
1655 : : /* do the actual sort in the leader */
1656 : 0 : tuplesort_performsort(state->bs_sortstate);
1657 : :
1658 : : /*
1659 : : * Initialize buffer to combine entries for the same key.
1660 : : *
1661 : : * The leader is allowed to use the whole maintenance_work_mem buffer to
1662 : : * combine data. The parallel workers already completed.
1663 : : */
1664 : 0 : buffer = GinBufferInit(state->ginstate.index);
1665 : :
1666 : : /*
1667 : : * Set the progress target for the next phase. Reset the block number
1668 : : * values set by table_index_build_scan
1669 : : */
1670 : : {
1671 : 0 : const int progress_index[] = {
1672 : : PROGRESS_CREATEIDX_SUBPHASE,
1673 : : PROGRESS_CREATEIDX_TUPLES_TOTAL,
1674 : : PROGRESS_SCAN_BLOCKS_TOTAL,
1675 : : PROGRESS_SCAN_BLOCKS_DONE
1676 : : };
1677 : 0 : const int64 progress_vals[] = {
1678 : : PROGRESS_GIN_PHASE_MERGE_2,
1679 : 0 : state->bs_numtuples,
1680 : : 0, 0
1681 : : };
1682 : :
1683 : 0 : pgstat_progress_update_multi_param(4, progress_index, progress_vals);
1684 : : }
1685 : :
1686 : : /*
1687 : : * Read the GIN tuples from the shared tuplesort, sorted by category and
1688 : : * key. That probably gives us order matching how data is organized in the
1689 : : * index.
1690 : : *
1691 : : * We don't insert the GIN tuples right away, but instead accumulate as
1692 : : * many TIDs for the same key as possible, and then insert that at once.
1693 : : * This way we don't need to decompress/recompress the posting lists, etc.
1694 : : */
1695 [ # # ]: 0 : while ((tup = tuplesort_getgintuple(state->bs_sortstate, &tuplen, true)) != NULL)
1696 : : {
1697 : : MemoryContext oldCtx;
1698 : :
1699 [ # # ]: 0 : CHECK_FOR_INTERRUPTS();
1700 : :
1701 : : /*
1702 : : * If the buffer can accept the new GIN tuple, just store it there and
1703 : : * we're done. If it's a different key (or maybe too much data) flush
1704 : : * the current contents into the index first.
1705 : : */
1706 [ # # ]: 0 : if (!GinBufferCanAddKey(buffer, tup))
1707 : : {
1708 : : /*
1709 : : * Buffer is not empty and it's storing a different key - flush
1710 : : * the data into the insert, and start a new entry for current
1711 : : * GinTuple.
1712 : : */
1713 : 0 : AssertCheckItemPointers(buffer);
1714 : :
229 1715 : 0 : oldCtx = MemoryContextSwitchTo(state->tmpCtx);
1716 : :
289 1717 : 0 : ginEntryInsert(&state->ginstate,
1718 : 0 : buffer->attnum, buffer->key, buffer->category,
1719 : 0 : buffer->items, buffer->nitems, &state->buildStats);
1720 : :
229 1721 : 0 : MemoryContextSwitchTo(oldCtx);
1722 : 0 : MemoryContextReset(state->tmpCtx);
1723 : :
1724 : : /* discard the existing data */
289 1725 : 0 : GinBufferReset(buffer);
1726 : : }
1727 : :
1728 : : /*
1729 : : * We're about to add a GIN tuple to the buffer - check the memory
1730 : : * limit first, and maybe write out some of the data into the index
1731 : : * first, if needed (and possible). We only flush the part of the TID
1732 : : * list that we know won't change, and only if there's enough data for
1733 : : * compression to work well.
1734 : : */
288 1735 [ # # ]: 0 : if (GinBufferShouldTrim(buffer, tup))
1736 : : {
1737 [ # # ]: 0 : Assert(buffer->nfrozen > 0);
1738 : :
1739 : : /*
1740 : : * Buffer is not empty and it's storing a different key - flush
1741 : : * the data into the insert, and start a new entry for current
1742 : : * GinTuple.
1743 : : */
1744 : 0 : AssertCheckItemPointers(buffer);
1745 : :
229 1746 : 0 : oldCtx = MemoryContextSwitchTo(state->tmpCtx);
1747 : :
288 1748 : 0 : ginEntryInsert(&state->ginstate,
1749 : 0 : buffer->attnum, buffer->key, buffer->category,
1750 : 0 : buffer->items, buffer->nfrozen, &state->buildStats);
1751 : :
229 1752 : 0 : MemoryContextSwitchTo(oldCtx);
1753 : 0 : MemoryContextReset(state->tmpCtx);
1754 : :
1755 : : /* truncate the data we've just discarded */
288 1756 : 0 : GinBufferTrim(buffer);
1757 : : }
1758 : :
1759 : : /*
1760 : : * Remember data for the current tuple (either remember the new key,
1761 : : * or append if to the existing data).
1762 : : */
289 1763 : 0 : GinBufferStoreTuple(buffer, tup);
1764 : :
1765 : : /* Report progress */
1766 : 0 : pgstat_progress_update_param(PROGRESS_CREATEIDX_TUPLES_DONE,
1767 : : ++numtuples);
1768 : : }
1769 : :
1770 : : /* flush data remaining in the buffer (for the last key) */
1771 [ # # ]: 0 : if (!GinBufferIsEmpty(buffer))
1772 : : {
1773 : 0 : AssertCheckItemPointers(buffer);
1774 : :
1775 : 0 : ginEntryInsert(&state->ginstate,
1776 : 0 : buffer->attnum, buffer->key, buffer->category,
1777 : 0 : buffer->items, buffer->nitems, &state->buildStats);
1778 : :
1779 : : /* discard the existing data */
1780 : 0 : GinBufferReset(buffer);
1781 : :
1782 : : /* Report progress */
1783 : 0 : pgstat_progress_update_param(PROGRESS_CREATEIDX_TUPLES_DONE,
1784 : : ++numtuples);
1785 : : }
1786 : :
1787 : : /* relase all the memory */
1788 : 0 : GinBufferFree(buffer);
1789 : :
1790 : 0 : tuplesort_end(state->bs_sortstate);
1791 : :
1792 : 0 : return reltuples;
1793 : : }
1794 : :
1795 : : /*
1796 : : * Returns size of shared memory required to store state for a parallel
1797 : : * gin index build based on the snapshot its parallel scan will use.
1798 : : */
1799 : : static Size
1800 : 0 : _gin_parallel_estimate_shared(Relation heap, Snapshot snapshot)
1801 : : {
1802 : : /* c.f. shm_toc_allocate as to why BUFFERALIGN is used */
1803 : 0 : return add_size(BUFFERALIGN(sizeof(GinBuildShared)),
1804 : : table_parallelscan_estimate(heap, snapshot));
1805 : : }
1806 : :
1807 : : /*
1808 : : * Within leader, participate as a parallel worker.
1809 : : */
1810 : : static void
1811 : 0 : _gin_leader_participate_as_worker(GinBuildState *buildstate, Relation heap, Relation index)
1812 : : {
1813 : 0 : GinLeader *ginleader = buildstate->bs_leader;
1814 : : int sortmem;
1815 : :
1816 : : /*
1817 : : * Might as well use reliable figure when doling out maintenance_work_mem
1818 : : * (when requested number of workers were not launched, this will be
1819 : : * somewhat higher than it is for other workers).
1820 : : */
1821 : 0 : sortmem = maintenance_work_mem / ginleader->nparticipanttuplesorts;
1822 : :
1823 : : /* Perform work common to all participants */
1824 : 0 : _gin_parallel_scan_and_build(buildstate, ginleader->ginshared,
1825 : : ginleader->sharedsort, heap, index,
1826 : : sortmem, true);
1827 : 0 : }
1828 : :
1829 : : /*
1830 : : * _gin_process_worker_data
1831 : : * First phase of the key merging, happening in the worker.
1832 : : *
1833 : : * Depending on the number of distinct keys, the TID lists produced by the
1834 : : * callback may be very short (due to frequent evictions in the callback).
1835 : : * But combining many tiny lists is expensive, so we try to do as much as
1836 : : * possible in the workers and only then pass the results to the leader.
1837 : : *
1838 : : * We read the tuples sorted by the key, and merge them into larger lists.
1839 : : * At the moment there's no memory limit, so this will just produce one
1840 : : * huge (sorted) list per key in each worker. Which means the leader will
1841 : : * do a very limited number of mergesorts, which is good.
1842 : : */
1843 : : static void
1844 : 0 : _gin_process_worker_data(GinBuildState *state, Tuplesortstate *worker_sort,
1845 : : bool progress)
1846 : : {
1847 : : GinTuple *tup;
1848 : : Size tuplen;
1849 : :
1850 : : GinBuffer *buffer;
1851 : :
1852 : : /*
1853 : : * Initialize buffer to combine entries for the same key.
1854 : : *
1855 : : * The workers are limited to the same amount of memory as during the sort
1856 : : * in ginBuildCallbackParallel. But this probably should be the 32MB used
1857 : : * during planning, just like there.
1858 : : */
1859 : 0 : buffer = GinBufferInit(state->ginstate.index);
1860 : :
1861 : : /* sort the raw per-worker data */
1862 [ # # ]: 0 : if (progress)
1863 : 0 : pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
1864 : : PROGRESS_GIN_PHASE_PERFORMSORT_1);
1865 : :
1866 : 0 : tuplesort_performsort(state->bs_worker_sort);
1867 : :
1868 : : /* reset the number of GIN tuples produced by this worker */
1869 : 0 : state->bs_numtuples = 0;
1870 : :
1871 [ # # ]: 0 : if (progress)
1872 : 0 : pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
1873 : : PROGRESS_GIN_PHASE_MERGE_1);
1874 : :
1875 : : /*
1876 : : * Read the GIN tuples from the shared tuplesort, sorted by the key, and
1877 : : * merge them into larger chunks for the leader to combine.
1878 : : */
1879 [ # # ]: 0 : while ((tup = tuplesort_getgintuple(worker_sort, &tuplen, true)) != NULL)
1880 : : {
1881 : :
1882 [ # # ]: 0 : CHECK_FOR_INTERRUPTS();
1883 : :
1884 : : /*
1885 : : * If the buffer can accept the new GIN tuple, just store it there and
1886 : : * we're done. If it's a different key (or maybe too much data) flush
1887 : : * the current contents into the index first.
1888 : : */
1889 [ # # ]: 0 : if (!GinBufferCanAddKey(buffer, tup))
1890 : : {
1891 : : GinTuple *ntup;
1892 : : Size ntuplen;
1893 : :
1894 : : /*
1895 : : * Buffer is not empty and it's storing a different key - flush
1896 : : * the data into the insert, and start a new entry for current
1897 : : * GinTuple.
1898 : : */
1899 : 0 : AssertCheckItemPointers(buffer);
1900 : :
1901 : 0 : ntup = _gin_build_tuple(buffer->attnum, buffer->category,
1902 : 0 : buffer->key, buffer->typlen, buffer->typbyval,
1903 : 0 : buffer->items, buffer->nitems, &ntuplen);
1904 : :
1905 : 0 : tuplesort_putgintuple(state->bs_sortstate, ntup, ntuplen);
1906 : 0 : state->bs_numtuples++;
1907 : :
1908 : 0 : pfree(ntup);
1909 : :
1910 : : /* discard the existing data */
1911 : 0 : GinBufferReset(buffer);
1912 : : }
1913 : :
1914 : : /*
1915 : : * We're about to add a GIN tuple to the buffer - check the memory
1916 : : * limit first, and maybe write out some of the data into the index
1917 : : * first, if needed (and possible). We only flush the part of the TID
1918 : : * list that we know won't change, and only if there's enough data for
1919 : : * compression to work well.
1920 : : */
288 1921 [ # # ]: 0 : if (GinBufferShouldTrim(buffer, tup))
1922 : : {
1923 : : GinTuple *ntup;
1924 : : Size ntuplen;
1925 : :
1926 [ # # ]: 0 : Assert(buffer->nfrozen > 0);
1927 : :
1928 : : /*
1929 : : * Buffer is not empty and it's storing a different key - flush
1930 : : * the data into the insert, and start a new entry for current
1931 : : * GinTuple.
1932 : : */
1933 : 0 : AssertCheckItemPointers(buffer);
1934 : :
1935 : 0 : ntup = _gin_build_tuple(buffer->attnum, buffer->category,
1936 : 0 : buffer->key, buffer->typlen, buffer->typbyval,
1937 : 0 : buffer->items, buffer->nfrozen, &ntuplen);
1938 : :
1939 : 0 : tuplesort_putgintuple(state->bs_sortstate, ntup, ntuplen);
1940 : :
1941 : 0 : pfree(ntup);
1942 : :
1943 : : /* truncate the data we've just discarded */
1944 : 0 : GinBufferTrim(buffer);
1945 : : }
1946 : :
1947 : : /*
1948 : : * Remember data for the current tuple (either remember the new key,
1949 : : * or append if to the existing data).
1950 : : */
289 1951 : 0 : GinBufferStoreTuple(buffer, tup);
1952 : : }
1953 : :
1954 : : /* flush data remaining in the buffer (for the last key) */
1955 [ # # ]: 0 : if (!GinBufferIsEmpty(buffer))
1956 : : {
1957 : : GinTuple *ntup;
1958 : : Size ntuplen;
1959 : :
1960 : 0 : AssertCheckItemPointers(buffer);
1961 : :
1962 : 0 : ntup = _gin_build_tuple(buffer->attnum, buffer->category,
1963 : 0 : buffer->key, buffer->typlen, buffer->typbyval,
1964 : 0 : buffer->items, buffer->nitems, &ntuplen);
1965 : :
1966 : 0 : tuplesort_putgintuple(state->bs_sortstate, ntup, ntuplen);
1967 : 0 : state->bs_numtuples++;
1968 : :
1969 : 0 : pfree(ntup);
1970 : :
1971 : : /* discard the existing data */
1972 : 0 : GinBufferReset(buffer);
1973 : : }
1974 : :
1975 : : /* relase all the memory */
1976 : 0 : GinBufferFree(buffer);
1977 : :
1978 : 0 : tuplesort_end(worker_sort);
1979 : 0 : }
1980 : :
1981 : : /*
1982 : : * Perform a worker's portion of a parallel GIN index build sort.
1983 : : *
1984 : : * This generates a tuplesort for the worker portion of the table.
1985 : : *
1986 : : * sortmem is the amount of working memory to use within each worker,
1987 : : * expressed in KBs.
1988 : : *
1989 : : * When this returns, workers are done, and need only release resources.
1990 : : *
1991 : : * Before feeding data into a shared tuplesort (for the leader process),
1992 : : * the workers process data in two phases.
1993 : : *
1994 : : * 1) A worker reads a portion of rows from the table, accumulates entries
1995 : : * in memory, and flushes them into a private tuplesort (e.g. because of
1996 : : * using too much memory).
1997 : : *
1998 : : * 2) The private tuplesort gets sorted (by key and TID), the worker reads
1999 : : * the data again, and combines the entries as much as possible. This has
2000 : : * to happen eventually, and this way it's done in workers in parallel.
2001 : : *
2002 : : * Finally, the combined entries are written into the shared tuplesort, so
2003 : : * that the leader can process them.
2004 : : *
2005 : : * How well this works (compared to just writing entries into the shared
2006 : : * tuplesort) depends on the data set. For large tables with many distinct
2007 : : * keys this helps a lot. With many distinct keys it's likely the buffers has
2008 : : * to be flushed often, generating many entries with the same key and short
2009 : : * TID lists. These entries need to be sorted and merged at some point,
2010 : : * before writing them to the index. The merging is quite expensive, it can
2011 : : * easily be ~50% of a serial build, and doing as much of it in the workers
2012 : : * means it's parallelized. The leader still has to merge results from the
2013 : : * workers, but it's much more efficient to merge few large entries than
2014 : : * many tiny ones.
2015 : : *
2016 : : * This also reduces the amount of data the workers pass to the leader through
2017 : : * the shared tuplesort. OTOH the workers need more space for the private sort,
2018 : : * possibly up to 2x of the data, if no entries be merged in a worker. But this
2019 : : * is very unlikely, and the only consequence is inefficiency, so we ignore it.
2020 : : */
2021 : : static void
2022 : 0 : _gin_parallel_scan_and_build(GinBuildState *state,
2023 : : GinBuildShared *ginshared, Sharedsort *sharedsort,
2024 : : Relation heap, Relation index,
2025 : : int sortmem, bool progress)
2026 : : {
2027 : : SortCoordinate coordinate;
2028 : : TableScanDesc scan;
2029 : : double reltuples;
2030 : : IndexInfo *indexInfo;
2031 : :
2032 : : /* Initialize local tuplesort coordination state */
7 michael@paquier.xyz 2033 :UNC 0 : coordinate = palloc0_object(SortCoordinateData);
289 tomas.vondra@postgre 2034 :UBC 0 : coordinate->isWorker = true;
2035 : 0 : coordinate->nParticipants = -1;
2036 : 0 : coordinate->sharedsort = sharedsort;
2037 : :
2038 : : /* remember how much space is allowed for the accumulated entries */
2039 : 0 : state->work_mem = (sortmem / 2);
2040 : :
2041 : : /* remember how many workers participate in the build */
43 2042 : 0 : state->bs_num_workers = ginshared->scantuplesortstates;
2043 : :
2044 : : /* Begin "partial" tuplesort */
289 2045 : 0 : state->bs_sortstate = tuplesort_begin_index_gin(heap, index,
2046 : : state->work_mem,
2047 : : coordinate,
2048 : : TUPLESORT_NONE);
2049 : :
2050 : : /* Local per-worker sort of raw-data */
2051 : 0 : state->bs_worker_sort = tuplesort_begin_index_gin(heap, index,
2052 : : state->work_mem,
2053 : : NULL,
2054 : : TUPLESORT_NONE);
2055 : :
2056 : : /* Join parallel scan */
2057 : 0 : indexInfo = BuildIndexInfo(index);
2058 : 0 : indexInfo->ii_Concurrent = ginshared->isconcurrent;
2059 : :
2060 : 0 : scan = table_beginscan_parallel(heap,
2061 : : ParallelTableScanFromGinBuildShared(ginshared));
2062 : :
2063 : 0 : reltuples = table_index_build_scan(heap, index, indexInfo, true, progress,
2064 : : ginBuildCallbackParallel, state, scan);
2065 : :
2066 : : /* write remaining accumulated entries */
2067 : 0 : ginFlushBuildState(state, index);
2068 : :
2069 : : /*
2070 : : * Do the first phase of in-worker processing - sort the data produced by
2071 : : * the callback, and combine them into much larger chunks and place that
2072 : : * into the shared tuplestore for leader to process.
2073 : : */
2074 : 0 : _gin_process_worker_data(state, state->bs_worker_sort, progress);
2075 : :
2076 : : /* sort the GIN tuples built by this worker */
2077 : 0 : tuplesort_performsort(state->bs_sortstate);
2078 : :
2079 : 0 : state->bs_reltuples += reltuples;
2080 : :
2081 : : /*
2082 : : * Done. Record ambuild statistics.
2083 : : */
2084 [ # # ]: 0 : SpinLockAcquire(&ginshared->mutex);
2085 : 0 : ginshared->nparticipantsdone++;
2086 : 0 : ginshared->reltuples += state->bs_reltuples;
2087 : 0 : ginshared->indtuples += state->bs_numtuples;
2088 : 0 : SpinLockRelease(&ginshared->mutex);
2089 : :
2090 : : /* Notify leader */
2091 : 0 : ConditionVariableSignal(&ginshared->workersdonecv);
2092 : :
2093 : 0 : tuplesort_end(state->bs_sortstate);
2094 : 0 : }
2095 : :
2096 : : /*
2097 : : * Perform work within a launched parallel process.
2098 : : */
2099 : : void
2100 : 0 : _gin_parallel_build_main(dsm_segment *seg, shm_toc *toc)
2101 : : {
2102 : : char *sharedquery;
2103 : : GinBuildShared *ginshared;
2104 : : Sharedsort *sharedsort;
2105 : : GinBuildState buildstate;
2106 : : Relation heapRel;
2107 : : Relation indexRel;
2108 : : LOCKMODE heapLockmode;
2109 : : LOCKMODE indexLockmode;
2110 : : WalUsage *walusage;
2111 : : BufferUsage *bufferusage;
2112 : : int sortmem;
2113 : :
2114 : : /*
2115 : : * The only possible status flag that can be set to the parallel worker is
2116 : : * PROC_IN_SAFE_IC.
2117 : : */
2118 [ # # # # ]: 0 : Assert((MyProc->statusFlags == 0) ||
2119 : : (MyProc->statusFlags == PROC_IN_SAFE_IC));
2120 : :
2121 : : /* Set debug_query_string for individual workers first */
2122 : 0 : sharedquery = shm_toc_lookup(toc, PARALLEL_KEY_QUERY_TEXT, true);
2123 : 0 : debug_query_string = sharedquery;
2124 : :
2125 : : /* Report the query string from leader */
2126 : 0 : pgstat_report_activity(STATE_RUNNING, debug_query_string);
2127 : :
2128 : : /* Look up gin shared state */
2129 : 0 : ginshared = shm_toc_lookup(toc, PARALLEL_KEY_GIN_SHARED, false);
2130 : :
2131 : : /* Open relations using lock modes known to be obtained by index.c */
2132 [ # # ]: 0 : if (!ginshared->isconcurrent)
2133 : : {
2134 : 0 : heapLockmode = ShareLock;
2135 : 0 : indexLockmode = AccessExclusiveLock;
2136 : : }
2137 : : else
2138 : : {
2139 : 0 : heapLockmode = ShareUpdateExclusiveLock;
2140 : 0 : indexLockmode = RowExclusiveLock;
2141 : : }
2142 : :
2143 : : /* Open relations within worker */
2144 : 0 : heapRel = table_open(ginshared->heaprelid, heapLockmode);
2145 : 0 : indexRel = index_open(ginshared->indexrelid, indexLockmode);
2146 : :
2147 : : /* initialize the GIN build state */
2148 : 0 : initGinState(&buildstate.ginstate, indexRel);
2149 : 0 : buildstate.indtuples = 0;
2150 : 0 : memset(&buildstate.buildStats, 0, sizeof(GinStatsData));
2151 : 0 : memset(&buildstate.tid, 0, sizeof(ItemPointerData));
2152 : :
2153 : : /*
2154 : : * create a temporary memory context that is used to hold data not yet
2155 : : * dumped out to the index
2156 : : */
2157 : 0 : buildstate.tmpCtx = AllocSetContextCreate(CurrentMemoryContext,
2158 : : "Gin build temporary context",
2159 : : ALLOCSET_DEFAULT_SIZES);
2160 : :
2161 : : /*
2162 : : * create a temporary memory context that is used for calling
2163 : : * ginExtractEntries(), and can be reset after each tuple
2164 : : */
2165 : 0 : buildstate.funcCtx = AllocSetContextCreate(CurrentMemoryContext,
2166 : : "Gin build temporary context for user-defined function",
2167 : : ALLOCSET_DEFAULT_SIZES);
2168 : :
2169 : 0 : buildstate.accum.ginstate = &buildstate.ginstate;
2170 : 0 : ginInitBA(&buildstate.accum);
2171 : :
2172 : :
2173 : : /* Look up shared state private to tuplesort.c */
2174 : 0 : sharedsort = shm_toc_lookup(toc, PARALLEL_KEY_TUPLESORT, false);
2175 : 0 : tuplesort_attach_shared(sharedsort, seg);
2176 : :
2177 : : /* Prepare to track buffer usage during parallel execution */
2178 : 0 : InstrStartParallelQuery();
2179 : :
2180 : : /*
2181 : : * Might as well use reliable figure when doling out maintenance_work_mem
2182 : : * (when requested number of workers were not launched, this will be
2183 : : * somewhat higher than it is for other workers).
2184 : : */
2185 : 0 : sortmem = maintenance_work_mem / ginshared->scantuplesortstates;
2186 : :
2187 : 0 : _gin_parallel_scan_and_build(&buildstate, ginshared, sharedsort,
2188 : : heapRel, indexRel, sortmem, false);
2189 : :
2190 : : /* Report WAL/buffer usage during parallel execution */
2191 : 0 : bufferusage = shm_toc_lookup(toc, PARALLEL_KEY_BUFFER_USAGE, false);
2192 : 0 : walusage = shm_toc_lookup(toc, PARALLEL_KEY_WAL_USAGE, false);
2193 : 0 : InstrEndParallelQuery(&bufferusage[ParallelWorkerNumber],
2194 : 0 : &walusage[ParallelWorkerNumber]);
2195 : :
2196 : 0 : index_close(indexRel, indexLockmode);
2197 : 0 : table_close(heapRel, heapLockmode);
2198 : 0 : }
2199 : :
2200 : : /*
2201 : : * Used to keep track of compressed TID lists when building a GIN tuple.
2202 : : */
2203 : : typedef struct
2204 : : {
2205 : : dlist_node node; /* linked list pointers */
2206 : : GinPostingList *seg;
2207 : : } GinSegmentInfo;
2208 : :
2209 : : /*
2210 : : * _gin_build_tuple
2211 : : * Serialize the state for an index key into a tuple for tuplesort.
2212 : : *
2213 : : * The tuple has a number of scalar fields (mostly matching the build state),
2214 : : * and then a data array that stores the key first, and then the TID list.
2215 : : *
2216 : : * For by-reference data types, we store the actual data. For by-val types
2217 : : * we simply copy the whole Datum, so that we don't have to care about stuff
2218 : : * like endianess etc. We could make it a little bit smaller, but it's not
2219 : : * worth it - it's a tiny fraction of the data, and we need to MAXALIGN the
2220 : : * start of the TID list anyway. So we wouldn't save anything. (This would
2221 : : * not be a good idea for the permanent in-index data, since we'd prefer
2222 : : * that that not depend on sizeof(Datum). But this is just a transient
2223 : : * representation to use while sorting the data.)
2224 : : *
2225 : : * The TID list is serialized as compressed - it's highly compressible, and
2226 : : * we already have ginCompressPostingList for this purpose. The list may be
2227 : : * pretty long, so we compress it into multiple segments and then copy all
2228 : : * of that into the GIN tuple.
2229 : : */
2230 : : static GinTuple *
2231 : 0 : _gin_build_tuple(OffsetNumber attrnum, unsigned char category,
2232 : : Datum key, int16 typlen, bool typbyval,
2233 : : ItemPointerData *items, uint32 nitems,
2234 : : Size *len)
2235 : : {
2236 : : GinTuple *tuple;
2237 : : char *ptr;
2238 : :
2239 : : Size tuplen;
2240 : : int keylen;
2241 : :
2242 : : dlist_mutable_iter iter;
2243 : : dlist_head segments;
2244 : : int ncompressed;
2245 : : Size compresslen;
2246 : :
2247 : : /*
2248 : : * Calculate how long is the key value. Only keys with GIN_CAT_NORM_KEY
2249 : : * have actual non-empty key. We include varlena headers and \0 bytes for
2250 : : * strings, to make it easier to access the data in-line.
2251 : : *
2252 : : * For byval types we simply copy the whole Datum. We could store just the
2253 : : * necessary bytes, but this is simpler to work with and not worth the
2254 : : * extra complexity. Moreover we still need to do the MAXALIGN to allow
2255 : : * direct access to items pointers.
2256 : : *
2257 : : * XXX Note that for byval types we store the whole datum, no matter what
2258 : : * the typlen value is.
2259 : : */
2260 [ # # ]: 0 : if (category != GIN_CAT_NORM_KEY)
2261 : 0 : keylen = 0;
2262 [ # # ]: 0 : else if (typbyval)
2263 : 0 : keylen = sizeof(Datum);
2264 [ # # ]: 0 : else if (typlen > 0)
2265 : 0 : keylen = typlen;
2266 [ # # ]: 0 : else if (typlen == -1)
134 peter@eisentraut.org 2267 :UNC 0 : keylen = VARSIZE_ANY(DatumGetPointer(key));
289 tomas.vondra@postgre 2268 [ # # ]:UBC 0 : else if (typlen == -2)
2269 : 0 : keylen = strlen(DatumGetPointer(key)) + 1;
2270 : : else
2271 [ # # ]: 0 : elog(ERROR, "unexpected typlen value (%d)", typlen);
2272 : :
2273 : : /* compress the item pointers */
288 2274 : 0 : ncompressed = 0;
2275 : 0 : compresslen = 0;
2276 : 0 : dlist_init(&segments);
2277 : :
2278 : : /* generate compressed segments of TID list chunks */
2279 [ # # ]: 0 : while (ncompressed < nitems)
2280 : : {
2281 : : int cnt;
7 michael@paquier.xyz 2282 :UNC 0 : GinSegmentInfo *seginfo = palloc_object(GinSegmentInfo);
2283 : :
288 tomas.vondra@postgre 2284 :UBC 0 : seginfo->seg = ginCompressPostingList(&items[ncompressed],
2285 : 0 : (nitems - ncompressed),
2286 : : UINT16_MAX,
2287 : : &cnt);
2288 : :
2289 : 0 : ncompressed += cnt;
2290 : 0 : compresslen += SizeOfGinPostingList(seginfo->seg);
2291 : :
2292 : 0 : dlist_push_tail(&segments, &seginfo->node);
2293 : : }
2294 : :
2295 : : /*
2296 : : * Determine GIN tuple length with all the data included. Be careful about
2297 : : * alignment, to allow direct access to compressed segments (those require
2298 : : * only SHORTALIGN).
2299 : : */
2300 : 0 : tuplen = SHORTALIGN(offsetof(GinTuple, data) + keylen) + compresslen;
2301 : :
289 2302 : 0 : *len = tuplen;
2303 : :
2304 : : /*
2305 : : * Allocate space for the whole GIN tuple.
2306 : : *
2307 : : * The palloc0 is needed - writetup_index_gin will write the whole tuple
2308 : : * to disk, so we need to make sure the padding bytes are defined
2309 : : * (otherwise valgrind would report this).
2310 : : */
2311 : 0 : tuple = palloc0(tuplen);
2312 : :
2313 : 0 : tuple->tuplen = tuplen;
2314 : 0 : tuple->attrnum = attrnum;
2315 : 0 : tuple->category = category;
2316 : 0 : tuple->keylen = keylen;
2317 : 0 : tuple->nitems = nitems;
2318 : :
2319 : : /* key type info */
2320 : 0 : tuple->typlen = typlen;
2321 : 0 : tuple->typbyval = typbyval;
2322 : :
2323 : : /*
2324 : : * Copy the key and items into the tuple. First the key value, which we
2325 : : * can simply copy right at the beginning of the data array.
2326 : : */
2327 [ # # ]: 0 : if (category == GIN_CAT_NORM_KEY)
2328 : : {
2329 [ # # ]: 0 : if (typbyval)
2330 : : {
2331 : 0 : memcpy(tuple->data, &key, sizeof(Datum));
2332 : : }
2333 [ # # ]: 0 : else if (typlen > 0) /* byref, fixed length */
2334 : : {
2335 : 0 : memcpy(tuple->data, DatumGetPointer(key), typlen);
2336 : : }
2337 [ # # ]: 0 : else if (typlen == -1)
2338 : : {
2339 : 0 : memcpy(tuple->data, DatumGetPointer(key), keylen);
2340 : : }
2341 [ # # ]: 0 : else if (typlen == -2)
2342 : : {
2343 : 0 : memcpy(tuple->data, DatumGetPointer(key), keylen);
2344 : : }
2345 : : }
2346 : :
2347 : : /* finally, copy the TIDs into the array */
2348 : 0 : ptr = (char *) tuple + SHORTALIGN(offsetof(GinTuple, data) + keylen);
2349 : :
2350 : : /* copy in the compressed data, and free the segments */
288 2351 [ # # # # ]: 0 : dlist_foreach_modify(iter, &segments)
2352 : : {
2353 : 0 : GinSegmentInfo *seginfo = dlist_container(GinSegmentInfo, node, iter.cur);
2354 : :
2355 : 0 : memcpy(ptr, seginfo->seg, SizeOfGinPostingList(seginfo->seg));
2356 : :
2357 : 0 : ptr += SizeOfGinPostingList(seginfo->seg);
2358 : :
2359 : 0 : dlist_delete(&seginfo->node);
2360 : :
2361 : 0 : pfree(seginfo->seg);
2362 : 0 : pfree(seginfo);
2363 : : }
2364 : :
289 2365 : 0 : return tuple;
2366 : : }
2367 : :
2368 : : /*
2369 : : * _gin_parse_tuple_key
2370 : : * Return a Datum representing the key stored in the tuple.
2371 : : *
2372 : : * Most of the tuple fields are directly accessible, the only thing that
2373 : : * needs more care is the key and the TID list.
2374 : : *
2375 : : * For the key, this returns a regular Datum representing it. It's either the
2376 : : * actual key value, or a pointer to the beginning of the data array (which is
2377 : : * where the data was copied by _gin_build_tuple).
2378 : : */
2379 : : static Datum
288 2380 : 0 : _gin_parse_tuple_key(GinTuple *a)
2381 : : {
2382 : : Datum key;
2383 : :
289 2384 [ # # ]: 0 : if (a->category != GIN_CAT_NORM_KEY)
2385 : 0 : return (Datum) 0;
2386 : :
2387 [ # # ]: 0 : if (a->typbyval)
2388 : : {
2389 : 0 : memcpy(&key, a->data, a->keylen);
2390 : 0 : return key;
2391 : : }
2392 : :
2393 : 0 : return PointerGetDatum(a->data);
2394 : : }
2395 : :
2396 : : /*
2397 : : * _gin_parse_tuple_items
2398 : : * Return a pointer to a palloc'd array of decompressed TID array.
2399 : : */
2400 : : static ItemPointer
288 2401 : 0 : _gin_parse_tuple_items(GinTuple *a)
2402 : : {
2403 : : int len;
2404 : : char *ptr;
2405 : : int ndecoded;
2406 : : ItemPointer items;
2407 : :
2408 : 0 : len = a->tuplen - SHORTALIGN(offsetof(GinTuple, data) + a->keylen);
2409 : 0 : ptr = (char *) a + SHORTALIGN(offsetof(GinTuple, data) + a->keylen);
2410 : :
2411 : 0 : items = ginPostingListDecodeAllSegments((GinPostingList *) ptr, len, &ndecoded);
2412 : :
2413 [ # # ]: 0 : Assert(ndecoded == a->nitems);
2414 : :
15 peter@eisentraut.org 2415 :UNC 0 : return items;
2416 : : }
2417 : :
2418 : : /*
2419 : : * _gin_compare_tuples
2420 : : * Compare GIN tuples, used by tuplesort during parallel index build.
2421 : : *
2422 : : * The scalar fields (attrnum, category) are compared first, the key value is
2423 : : * compared last. The comparisons are done using type-specific sort support
2424 : : * functions.
2425 : : *
2426 : : * If the key value matches, we compare the first TID value in the TID list,
2427 : : * which means the tuples are merged in an order in which they are most
2428 : : * likely to be simply concatenated. (This "first" TID will also allow us
2429 : : * to determine a point up to which the list is fully determined and can be
2430 : : * written into the index to enforce a memory limit etc.)
2431 : : */
2432 : : int
289 tomas.vondra@postgre 2433 :UBC 0 : _gin_compare_tuples(GinTuple *a, GinTuple *b, SortSupport ssup)
2434 : : {
2435 : : int r;
2436 : : Datum keya,
2437 : : keyb;
2438 : :
2439 [ # # ]: 0 : if (a->attrnum < b->attrnum)
2440 : 0 : return -1;
2441 : :
2442 [ # # ]: 0 : if (a->attrnum > b->attrnum)
2443 : 0 : return 1;
2444 : :
2445 [ # # ]: 0 : if (a->category < b->category)
2446 : 0 : return -1;
2447 : :
2448 [ # # ]: 0 : if (a->category > b->category)
2449 : 0 : return 1;
2450 : :
2451 [ # # ]: 0 : if (a->category == GIN_CAT_NORM_KEY)
2452 : : {
288 2453 : 0 : keya = _gin_parse_tuple_key(a);
2454 : 0 : keyb = _gin_parse_tuple_key(b);
2455 : :
289 2456 : 0 : r = ApplySortComparator(keya, false,
2457 : : keyb, false,
2458 : 0 : &ssup[a->attrnum - 1]);
2459 : :
2460 : : /* if the key is the same, consider the first TID in the array */
2461 [ # # ]: 0 : return (r != 0) ? r : ItemPointerCompare(GinTupleGetFirst(a),
289 tomas.vondra@postgre 2462 :UIC 0 : GinTupleGetFirst(b));
2463 : : }
2464 : :
289 tomas.vondra@postgre 2465 :UBC 0 : return ItemPointerCompare(GinTupleGetFirst(a),
289 tomas.vondra@postgre 2466 :UIC 0 : GinTupleGetFirst(b));
2467 : : }
|