Age Owner Branch data TLA Line data Source code
1 : : /*-------------------------------------------------------------------------
2 : : *
3 : : * atomics.h
4 : : * Atomic operations.
5 : : *
6 : : * Hardware and compiler dependent functions for manipulating memory
7 : : * atomically and dealing with cache coherency. Used to implement locking
8 : : * facilities and lockless algorithms/data structures.
9 : : *
10 : : * To bring up postgres on a platform/compiler at the very least
11 : : * implementations for the following operations should be provided:
12 : : * * pg_compiler_barrier(), pg_write_barrier(), pg_read_barrier()
13 : : * * pg_atomic_compare_exchange_u32(), pg_atomic_fetch_add_u32()
14 : : * * pg_atomic_test_set_flag(), pg_atomic_init_flag(), pg_atomic_clear_flag()
15 : : * * PG_HAVE_8BYTE_SINGLE_COPY_ATOMICITY should be defined if appropriate.
16 : : *
17 : : * There exist generic, hardware independent, implementations for several
18 : : * compilers which might be sufficient, although possibly not optimal, for a
19 : : * new platform. If no such generic implementation is available spinlocks will
20 : : * be used to implement the 64-bit parts of the API.
21 : : *
22 : : * Implement _u64 atomics if and only if your platform can use them
23 : : * efficiently (and obviously correctly).
24 : : *
25 : : * Use higher level functionality (lwlocks, spinlocks, heavyweight locks)
26 : : * whenever possible. Writing correct code using these facilities is hard.
27 : : *
28 : : * For an introduction to using memory barriers within the PostgreSQL backend,
29 : : * see src/backend/storage/lmgr/README.barrier
30 : : *
31 : : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
32 : : * Portions Copyright (c) 1994, Regents of the University of California
33 : : *
34 : : * src/include/port/atomics.h
35 : : *
36 : : *-------------------------------------------------------------------------
37 : : */
38 : : #ifndef ATOMICS_H
39 : : #define ATOMICS_H
40 : :
41 : : #ifdef FRONTEND
42 : : #error "atomics.h may not be included from frontend code"
43 : : #endif
44 : :
45 : : #define INSIDE_ATOMICS_H
46 : :
47 : : #include <limits.h>
48 : :
49 : : /*
50 : : * First a set of architecture specific files is included.
51 : : *
52 : : * These files can provide the full set of atomics or can do pretty much
53 : : * nothing if all the compilers commonly used on these platforms provide
54 : : * usable generics.
55 : : *
56 : : * Don't add an inline assembly of the actual atomic operations if all the
57 : : * common implementations of your platform provide intrinsics. Intrinsics are
58 : : * much easier to understand and potentially support more architectures.
59 : : *
60 : : * It will often make sense to define memory barrier semantics here, since
61 : : * e.g. generic compiler intrinsics for x86 memory barriers can't know that
62 : : * postgres doesn't need x86 read/write barriers do anything more than a
63 : : * compiler barrier.
64 : : *
65 : : */
66 : : #if defined(__arm__) || defined(__arm) || defined(__aarch64__)
67 : : #include "port/atomics/arch-arm.h"
68 : : #elif defined(__i386__) || defined(__i386) || defined(__x86_64__)
69 : : #include "port/atomics/arch-x86.h"
70 : : #elif defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__)
71 : : #include "port/atomics/arch-ppc.h"
72 : : #endif
73 : :
74 : : /*
75 : : * Compiler specific, but architecture independent implementations.
76 : : *
77 : : * Provide architecture independent implementations of the atomic
78 : : * facilities. At the very least compiler barriers should be provided, but a
79 : : * full implementation of
80 : : * * pg_compiler_barrier(), pg_write_barrier(), pg_read_barrier()
81 : : * * pg_atomic_compare_exchange_u32(), pg_atomic_fetch_add_u32()
82 : : * using compiler intrinsics are a good idea.
83 : : */
84 : : /*
85 : : * gcc or compatible, including clang and icc.
86 : : */
87 : : #if defined(__GNUC__) || defined(__INTEL_COMPILER)
88 : : #include "port/atomics/generic-gcc.h"
89 : : #elif defined(_MSC_VER)
90 : : #include "port/atomics/generic-msvc.h"
91 : : #elif defined(__SUNPRO_C) && !defined(__GNUC__)
92 : : #include "port/atomics/generic-sunpro.h"
93 : : #else
94 : : /* Unknown compiler. */
95 : : #endif
96 : :
97 : : /* Fail if we couldn't find implementations of required facilities. */
98 : : #if !defined(PG_HAVE_ATOMIC_U32_SUPPORT)
99 : : #error "could not find an implementation of pg_atomic_uint32"
100 : : #endif
101 : : #if !defined(pg_compiler_barrier_impl)
102 : : #error "could not find an implementation of pg_compiler_barrier"
103 : : #endif
104 : : #if !defined(pg_memory_barrier_impl)
105 : : #error "could not find an implementation of pg_memory_barrier_impl"
106 : : #endif
107 : :
108 : :
109 : : /*
110 : : * Provide a spinlock-based implementation of the 64 bit variants, if
111 : : * necessary.
112 : : */
113 : : #include "port/atomics/fallback.h"
114 : :
115 : : /*
116 : : * Provide additional operations using supported infrastructure. These are
117 : : * expected to be efficient if the underlying atomic operations are efficient.
118 : : */
119 : : #include "port/atomics/generic.h"
120 : :
121 : :
122 : : /*
123 : : * pg_compiler_barrier - prevent the compiler from moving code across
124 : : *
125 : : * A compiler barrier need not (and preferably should not) emit any actual
126 : : * machine code, but must act as an optimization fence: the compiler must not
127 : : * reorder loads or stores to main memory around the barrier. However, the
128 : : * CPU may still reorder loads or stores at runtime, if the architecture's
129 : : * memory model permits this.
130 : : */
131 : : #define pg_compiler_barrier() pg_compiler_barrier_impl()
132 : :
133 : : /*
134 : : * pg_memory_barrier - prevent the CPU from reordering memory access
135 : : *
136 : : * A memory barrier must act as a compiler barrier, and in addition must
137 : : * guarantee that all loads and stores issued prior to the barrier are
138 : : * completed before any loads or stores issued after the barrier. Unless
139 : : * loads and stores are totally ordered (which is not the case on most
140 : : * architectures) this requires issuing some sort of memory fencing
141 : : * instruction.
142 : : */
143 : : #define pg_memory_barrier() pg_memory_barrier_impl()
144 : :
145 : : /*
146 : : * pg_(read|write)_barrier - prevent the CPU from reordering memory access
147 : : *
148 : : * A read barrier must act as a compiler barrier, and in addition must
149 : : * guarantee that any loads issued prior to the barrier are completed before
150 : : * any loads issued after the barrier. Similarly, a write barrier acts
151 : : * as a compiler barrier, and also orders stores. Read and write barriers
152 : : * are thus weaker than a full memory barrier, but stronger than a compiler
153 : : * barrier. In practice, on machines with strong memory ordering, read and
154 : : * write barriers may require nothing more than a compiler barrier.
155 : : */
156 : : #define pg_read_barrier() pg_read_barrier_impl()
157 : : #define pg_write_barrier() pg_write_barrier_impl()
158 : :
159 : : /*
160 : : * Spinloop delay - Allow CPU to relax in busy loops
161 : : */
162 : : #define pg_spin_delay() pg_spin_delay_impl()
163 : :
164 : : /*
165 : : * pg_atomic_init_flag - initialize atomic flag.
166 : : *
167 : : * No barrier semantics.
168 : : */
169 : : static inline void
3999 andres@anarazel.de 170 :CBC 11150 : pg_atomic_init_flag(volatile pg_atomic_flag *ptr)
171 : : {
172 : 11150 : pg_atomic_init_flag_impl(ptr);
173 : 11150 : }
174 : :
175 : : /*
176 : : * pg_atomic_test_set_flag - TAS()
177 : : *
178 : : * Returns true if the flag has successfully been set, false otherwise.
179 : : *
180 : : * Acquire (including read barrier) semantics.
181 : : */
182 : : static inline bool
183 : 645 : pg_atomic_test_set_flag(volatile pg_atomic_flag *ptr)
184 : : {
185 : 645 : return pg_atomic_test_set_flag_impl(ptr);
186 : : }
187 : :
188 : : /*
189 : : * pg_atomic_unlocked_test_flag - Check if the lock is free
190 : : *
191 : : * Returns true if the flag currently is not set, false otherwise.
192 : : *
193 : : * No barrier semantics.
194 : : */
195 : : static inline bool
196 : 2228 : pg_atomic_unlocked_test_flag(volatile pg_atomic_flag *ptr)
197 : : {
198 : 2228 : return pg_atomic_unlocked_test_flag_impl(ptr);
199 : : }
200 : :
201 : : /*
202 : : * pg_atomic_clear_flag - release lock set by TAS()
203 : : *
204 : : * Release (including write barrier) semantics.
205 : : */
206 : : static inline void
207 : 39 : pg_atomic_clear_flag(volatile pg_atomic_flag *ptr)
208 : : {
209 : 39 : pg_atomic_clear_flag_impl(ptr);
210 : 39 : }
211 : :
212 : :
213 : : /*
214 : : * pg_atomic_init_u32 - initialize atomic variable
215 : : *
216 : : * Has to be done before any concurrent usage..
217 : : *
218 : : * No barrier semantics.
219 : : */
220 : : static inline void
221 : 22018293 : pg_atomic_init_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
222 : : {
223 [ - + ]: 22018293 : AssertPointerAlignment(ptr, 4);
224 : :
225 : 22018293 : pg_atomic_init_u32_impl(ptr, val);
226 : 22018293 : }
227 : :
228 : : /*
229 : : * pg_atomic_read_u32 - unlocked read from atomic variable.
230 : : *
231 : : * The read is guaranteed to return a value as it has been written by this or
232 : : * another process at some point in the past. There's however no cache
233 : : * coherency interaction guaranteeing the value hasn't since been written to
234 : : * again.
235 : : *
236 : : * No barrier semantics.
237 : : */
238 : : static inline uint32
239 : 534717650 : pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
240 : : {
241 [ - + ]: 534717650 : AssertPointerAlignment(ptr, 4);
242 : 534717650 : return pg_atomic_read_u32_impl(ptr);
243 : : }
244 : :
245 : : /*
246 : : * pg_atomic_read_membarrier_u32 - read with barrier semantics.
247 : : *
248 : : * This read is guaranteed to return the current value, provided that the value
249 : : * is only ever updated via operations with barrier semantics, such as
250 : : * pg_atomic_compare_exchange_u32() and pg_atomic_write_membarrier_u32().
251 : : * While this may be less performant than pg_atomic_read_u32(), it may be
252 : : * easier to reason about correctness with this function in less performance-
253 : : * sensitive code.
254 : : *
255 : : * Full barrier semantics.
256 : : */
257 : : static inline uint32
258 : : pg_atomic_read_membarrier_u32(volatile pg_atomic_uint32 *ptr)
259 : : {
260 : : AssertPointerAlignment(ptr, 4);
261 : :
262 : : return pg_atomic_read_membarrier_u32_impl(ptr);
263 : : }
264 : :
265 : : /*
266 : : * pg_atomic_write_u32 - write to atomic variable.
267 : : *
268 : : * The write is guaranteed to succeed as a whole, i.e. it's not possible to
269 : : * observe a partial write for any reader. Note that this correctly interacts
270 : : * with pg_atomic_compare_exchange_u32, in contrast to
271 : : * pg_atomic_unlocked_write_u32().
272 : : *
273 : : * No barrier semantics.
274 : : */
275 : : static inline void
276 : 34377898 : pg_atomic_write_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
277 : : {
278 [ - + ]: 34377898 : AssertPointerAlignment(ptr, 4);
279 : :
280 : 34377898 : pg_atomic_write_u32_impl(ptr, val);
281 : 34377898 : }
282 : :
283 : : /*
284 : : * pg_atomic_unlocked_write_u32 - unlocked write to atomic variable.
285 : : *
286 : : * The write is guaranteed to succeed as a whole, i.e. it's not possible to
287 : : * observe a partial write for any reader. But note that writing this way is
288 : : * not guaranteed to correctly interact with read-modify-write operations like
289 : : * pg_atomic_compare_exchange_u32. This should only be used in cases where
290 : : * minor performance regressions due to atomics emulation are unacceptable.
291 : : *
292 : : * No barrier semantics.
293 : : */
294 : : static inline void
3256 295 : 5161826 : pg_atomic_unlocked_write_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
296 : : {
297 [ - + ]: 5161826 : AssertPointerAlignment(ptr, 4);
298 : :
299 : 5161826 : pg_atomic_unlocked_write_u32_impl(ptr, val);
300 : 5161826 : }
301 : :
302 : : /*
303 : : * pg_atomic_write_membarrier_u32 - write with barrier semantics.
304 : : *
305 : : * The write is guaranteed to succeed as a whole, i.e., it's not possible to
306 : : * observe a partial write for any reader. Note that this correctly interacts
307 : : * with both pg_atomic_compare_exchange_u32() and
308 : : * pg_atomic_read_membarrier_u32(). While this may be less performant than
309 : : * pg_atomic_write_u32(), it may be easier to reason about correctness with
310 : : * this function in less performance-sensitive code.
311 : : *
312 : : * Full barrier semantics.
313 : : */
314 : : static inline void
555 nathan@postgresql.or 315 : 13 : pg_atomic_write_membarrier_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
316 : : {
317 [ - + ]: 13 : AssertPointerAlignment(ptr, 4);
318 : :
319 : 13 : pg_atomic_write_membarrier_u32_impl(ptr, val);
320 : 13 : }
321 : :
322 : : /*
323 : : * pg_atomic_exchange_u32 - exchange newval with current value
324 : : *
325 : : * Returns the old value of 'ptr' before the swap.
326 : : *
327 : : * Full barrier semantics.
328 : : */
329 : : static inline uint32
3999 andres@anarazel.de 330 : 12321 : pg_atomic_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 newval)
331 : : {
332 [ - + ]: 12321 : AssertPointerAlignment(ptr, 4);
333 : :
334 : 12321 : return pg_atomic_exchange_u32_impl(ptr, newval);
335 : : }
336 : :
337 : : /*
338 : : * pg_atomic_compare_exchange_u32 - CAS operation
339 : : *
340 : : * Atomically compare the current value of ptr with *expected and store newval
341 : : * iff ptr and *expected have the same value. The current value of *ptr will
342 : : * always be stored in *expected.
343 : : *
344 : : * Return true if values have been exchanged, false otherwise.
345 : : *
346 : : * Full barrier semantics.
347 : : */
348 : : static inline bool
349 : 356848471 : pg_atomic_compare_exchange_u32(volatile pg_atomic_uint32 *ptr,
350 : : uint32 *expected, uint32 newval)
351 : : {
352 [ - + ]: 356848471 : AssertPointerAlignment(ptr, 4);
353 [ - + ]: 356848471 : AssertPointerAlignment(expected, 4);
354 : :
355 : 356848471 : return pg_atomic_compare_exchange_u32_impl(ptr, expected, newval);
356 : : }
357 : :
358 : : /*
359 : : * pg_atomic_fetch_add_u32 - atomically add to variable
360 : : *
361 : : * Returns the value of ptr before the arithmetic operation.
362 : : *
363 : : * Full barrier semantics.
364 : : */
365 : : static inline uint32
366 : 6969914 : pg_atomic_fetch_add_u32(volatile pg_atomic_uint32 *ptr, int32 add_)
367 : : {
368 [ - + ]: 6969914 : AssertPointerAlignment(ptr, 4);
369 : 6969914 : return pg_atomic_fetch_add_u32_impl(ptr, add_);
370 : : }
371 : :
372 : : /*
373 : : * pg_atomic_fetch_sub_u32 - atomically subtract from variable
374 : : *
375 : : * Returns the value of ptr before the arithmetic operation. Note that sub_
376 : : * may not be INT_MIN due to platform limitations.
377 : : *
378 : : * Full barrier semantics.
379 : : */
380 : : static inline uint32
381 : 678048 : pg_atomic_fetch_sub_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
382 : : {
383 [ - + ]: 678048 : AssertPointerAlignment(ptr, 4);
384 [ - + ]: 678048 : Assert(sub_ != INT_MIN);
385 : 678048 : return pg_atomic_fetch_sub_u32_impl(ptr, sub_);
386 : : }
387 : :
388 : : /*
389 : : * pg_atomic_fetch_and_u32 - atomically bit-and and_ with variable
390 : : *
391 : : * Returns the value of ptr before the arithmetic operation.
392 : : *
393 : : * Full barrier semantics.
394 : : */
395 : : static inline uint32
396 : 2554839 : pg_atomic_fetch_and_u32(volatile pg_atomic_uint32 *ptr, uint32 and_)
397 : : {
398 [ - + ]: 2554839 : AssertPointerAlignment(ptr, 4);
399 : 2554839 : return pg_atomic_fetch_and_u32_impl(ptr, and_);
400 : : }
401 : :
402 : : /*
403 : : * pg_atomic_fetch_or_u32 - atomically bit-or or_ with variable
404 : : *
405 : : * Returns the value of ptr before the arithmetic operation.
406 : : *
407 : : * Full barrier semantics.
408 : : */
409 : : static inline uint32
410 : 37639806 : pg_atomic_fetch_or_u32(volatile pg_atomic_uint32 *ptr, uint32 or_)
411 : : {
412 [ - + ]: 37639806 : AssertPointerAlignment(ptr, 4);
413 : 37639806 : return pg_atomic_fetch_or_u32_impl(ptr, or_);
414 : : }
415 : :
416 : : /*
417 : : * pg_atomic_add_fetch_u32 - atomically add to variable
418 : : *
419 : : * Returns the value of ptr after the arithmetic operation.
420 : : *
421 : : * Full barrier semantics.
422 : : */
423 : : static inline uint32
424 : 415 : pg_atomic_add_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 add_)
425 : : {
426 [ - + ]: 415 : AssertPointerAlignment(ptr, 4);
427 : 415 : return pg_atomic_add_fetch_u32_impl(ptr, add_);
428 : : }
429 : :
430 : : /*
431 : : * pg_atomic_sub_fetch_u32 - atomically subtract from variable
432 : : *
433 : : * Returns the value of ptr after the arithmetic operation. Note that sub_ may
434 : : * not be INT_MIN due to platform limitations.
435 : : *
436 : : * Full barrier semantics.
437 : : */
438 : : static inline uint32
439 : 231013700 : pg_atomic_sub_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
440 : : {
441 [ - + ]: 231013700 : AssertPointerAlignment(ptr, 4);
442 [ - + ]: 231013700 : Assert(sub_ != INT_MIN);
443 : 231013700 : return pg_atomic_sub_fetch_u32_impl(ptr, sub_);
444 : : }
445 : :
446 : : /* ----
447 : : * The 64 bit operations have the same semantics as their 32bit counterparts
448 : : * if they are available. Check the corresponding 32bit function for
449 : : * documentation.
450 : : * ----
451 : : */
452 : : static inline void
453 : 2719107 : pg_atomic_init_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
454 : : {
455 : : /*
456 : : * Can't necessarily enforce alignment - and don't need it - when using
457 : : * the spinlock based fallback implementation. Therefore only assert when
458 : : * not using it.
459 : : */
460 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
461 [ - + ]: 2719107 : AssertPointerAlignment(ptr, 8);
462 : : #endif
463 : 2719107 : pg_atomic_init_u64_impl(ptr, val);
464 : 2719107 : }
465 : :
466 : : static inline uint64
467 : 53443483 : pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
468 : : {
469 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
470 [ - + ]: 53443483 : AssertPointerAlignment(ptr, 8);
471 : : #endif
472 : 53443483 : return pg_atomic_read_u64_impl(ptr);
473 : : }
474 : :
475 : : static inline uint64
555 nathan@postgresql.or 476 : 2113083 : pg_atomic_read_membarrier_u64(volatile pg_atomic_uint64 *ptr)
477 : : {
478 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
479 [ - + ]: 2113083 : AssertPointerAlignment(ptr, 8);
480 : : #endif
481 : 2113083 : return pg_atomic_read_membarrier_u64_impl(ptr);
482 : : }
483 : :
484 : : static inline void
3999 andres@anarazel.de 485 : 12116676 : pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
486 : : {
487 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
488 [ - + ]: 12116676 : AssertPointerAlignment(ptr, 8);
489 : : #endif
490 : 12116676 : pg_atomic_write_u64_impl(ptr, val);
491 : 12116676 : }
492 : :
493 : : static inline void
555 nathan@postgresql.or 494 : 887 : pg_atomic_write_membarrier_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
495 : : {
496 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
497 [ - + ]: 887 : AssertPointerAlignment(ptr, 8);
498 : : #endif
499 : 887 : pg_atomic_write_membarrier_u64_impl(ptr, val);
500 : 887 : }
501 : :
502 : : static inline uint64
3999 andres@anarazel.de 503 : 16162762 : pg_atomic_exchange_u64(volatile pg_atomic_uint64 *ptr, uint64 newval)
504 : : {
505 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
506 [ - + ]: 16162762 : AssertPointerAlignment(ptr, 8);
507 : : #endif
508 : 16162762 : return pg_atomic_exchange_u64_impl(ptr, newval);
509 : : }
510 : :
511 : : static inline bool
512 : 1846013 : pg_atomic_compare_exchange_u64(volatile pg_atomic_uint64 *ptr,
513 : : uint64 *expected, uint64 newval)
514 : : {
515 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
516 [ - + ]: 1846013 : AssertPointerAlignment(ptr, 8);
517 : : #endif
518 : 1846013 : return pg_atomic_compare_exchange_u64_impl(ptr, expected, newval);
519 : : }
520 : :
521 : : static inline uint64
522 : 96252 : pg_atomic_fetch_add_u64(volatile pg_atomic_uint64 *ptr, int64 add_)
523 : : {
524 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
525 [ - + ]: 96252 : AssertPointerAlignment(ptr, 8);
526 : : #endif
527 : 96252 : return pg_atomic_fetch_add_u64_impl(ptr, add_);
528 : : }
529 : :
530 : : static inline uint64
531 : 3 : pg_atomic_fetch_sub_u64(volatile pg_atomic_uint64 *ptr, int64 sub_)
532 : : {
533 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
534 [ - + ]: 3 : AssertPointerAlignment(ptr, 8);
535 : : #endif
3810 536 [ - + ]: 3 : Assert(sub_ != PG_INT64_MIN);
3999 537 : 3 : return pg_atomic_fetch_sub_u64_impl(ptr, sub_);
538 : : }
539 : :
540 : : static inline uint64
541 : 9 : pg_atomic_fetch_and_u64(volatile pg_atomic_uint64 *ptr, uint64 and_)
542 : : {
543 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
544 [ - + ]: 9 : AssertPointerAlignment(ptr, 8);
545 : : #endif
546 : 9 : return pg_atomic_fetch_and_u64_impl(ptr, and_);
547 : : }
548 : :
549 : : static inline uint64
550 : 6 : pg_atomic_fetch_or_u64(volatile pg_atomic_uint64 *ptr, uint64 or_)
551 : : {
552 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
553 [ - + ]: 6 : AssertPointerAlignment(ptr, 8);
554 : : #endif
555 : 6 : return pg_atomic_fetch_or_u64_impl(ptr, or_);
556 : : }
557 : :
558 : : static inline uint64
559 : 91 : pg_atomic_add_fetch_u64(volatile pg_atomic_uint64 *ptr, int64 add_)
560 : : {
561 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
562 [ - + ]: 91 : AssertPointerAlignment(ptr, 8);
563 : : #endif
564 : 91 : return pg_atomic_add_fetch_u64_impl(ptr, add_);
565 : : }
566 : :
567 : : static inline uint64
568 : 3 : pg_atomic_sub_fetch_u64(volatile pg_atomic_uint64 *ptr, int64 sub_)
569 : : {
570 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
571 [ - + ]: 3 : AssertPointerAlignment(ptr, 8);
572 : : #endif
3810 573 [ - + ]: 3 : Assert(sub_ != PG_INT64_MIN);
3999 574 : 3 : return pg_atomic_sub_fetch_u64_impl(ptr, sub_);
575 : : }
576 : :
577 : : /*
578 : : * Monotonically advance the given variable using only atomic operations until
579 : : * it's at least the target value. Returns the latest value observed, which
580 : : * may or may not be the target value.
581 : : *
582 : : * Full barrier semantics (even when value is unchanged).
583 : : */
584 : : static inline uint64
429 alvherre@alvh.no-ip. 585 : 445785 : pg_atomic_monotonic_advance_u64(volatile pg_atomic_uint64 *ptr, uint64 target)
586 : : {
587 : : uint64 currval;
588 : :
589 : : #ifndef PG_HAVE_ATOMIC_U64_SIMULATION
517 590 [ - + ]: 445785 : AssertPointerAlignment(ptr, 8);
591 : : #endif
592 : :
593 : 445785 : currval = pg_atomic_read_u64_impl(ptr);
429 594 [ + + ]: 445785 : if (currval >= target)
595 : : {
517 596 : 82841 : pg_memory_barrier();
597 : 82841 : return currval;
598 : : }
599 : :
429 600 [ + + ]: 363476 : while (currval < target)
601 : : {
602 [ + + ]: 362946 : if (pg_atomic_compare_exchange_u64(ptr, &currval, target))
603 : 362414 : return target;
604 : : }
605 : :
606 : 530 : return currval;
607 : : }
608 : :
609 : : #undef INSIDE_ATOMICS_H
610 : :
611 : : #endif /* ATOMICS_H */
|